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Chapter 1

Introduction

1.1 Install the packages

The best way to install the control package, including the GUI pysimCoder, is to follow the
method that can be found at this address([1])

https://github.com/robertobucher/LinuxLabo

Here it is possible to find a Makefile that can install all the required files in Ubuntu and Debian.
More info are available at the github page of the pysimCoder project(|[2]):

https://github.com/robertobucher/pysimCoder

1.2 Video

Felipe Depine ([3]) is registering some videos about installation and use of the pysimCoder tool.
The video are available at the Robotsb Youtube channel([4]).
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Chapter 2

The Python Control System toolbox

2.1 Basics

The Python Control Systems Library, is a package initially developed by Richard Murray at
Caltech. This toolbox contains a set of python classes and functions that implements common
operations for the analysis and design of feedback control systems([5]).

In addition, a MATLAB compatibility package (control.matlab) has been integrated in order
to provide functions equivalent to the commands available in the MATLAB Control Systems
Toolbox.

A complete description of the python control toolbox is available here:

https://python-control.readthedocs.io/en/latest/

In this chapter I introduce some basics of the Control system toolbox for Python. This tool is
still in development. A more complete description of the toolbox is available here ([5])

2.2 Models

LTT systems can be described in state-space form or as transfer functions.

11



12 CHAPTER 2. THE PYTHON CONTROL SYSTEM TOOLBOX

2.3 Continuous systems

2.4 State-space representation

In [1]: from control import x
In [2]: a=[[0,1],[—1,—1]]
In [3]: b=[[0],[1]]

In [4]: c¢=][1,0]

(-1 —1]]
B = [[0]
[1]]
C=[[1 0]]
D = [[0]]

2.5 Transfer function

In [1]: from control import x
In (2] g=tf(1,[1,1,1])
In [3]: print(g)

1

s"2 4+ s + 1

2.6 Zeros-Poles-Gain

This method is not implemented in control toolbox yet. It is available in the package scipy.signal
but it is not completely compatible with the class of LTT objects defined in the Python control
toolbox.

2.7 Discrete time systems

An additional fields (dt) in the StateSpace and TransferFunction classes is used to differ-
entiate continuous-time and discrete-time systems.
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2.8 State-space representation

In [4]: a=[[0,1],[1,1]]
In [5]: b=[[0][1]]

In [6]: c=[1,—1]

In [7]: d=0

In [8]: sysd = ss(a,b,c,d,0.01)

In [9]: print(sysd)

A=1[[0 1]
1 1]

B = [[0]
[1]]
C=1[[1 1]
D= [[0]]

dt = 0.01

2.9 Transfer function

In [1]: from control import x
In [2]: g=tf([1,—1],[1,—1,1],0.01)
In [3]: print(g)
z — 1
z"2 —z + 1

dt = 0.01

2.10 Conversions

The Python control system toolbox only implements conversion from continuous time systems
to discrete-time systems ( ¢2d ) with the methods “zoh”, “tustin” and “matched”. No conver-
sion from discrete to continuous has been implemented yet.

The supsictrl.ctr_repl package implements the function d2¢ with the methods “zoh’, ”foh “and
"tustin®.
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In [1]: from control import =x

In [2]: from control.Matlab import x
In [3]: g=tf(1,[1,1,1])

In [4] # Matlab compatibility

In [5]: gd = ¢2d(g,0.01)

In [6] # control toolbozx

In [7]: gd2 = sample_system(g,0.01)

In [8]: print(g)

s"2 + s + 1

In [9]: print(gd)

4.983e—05 z + 4.967e—05

z"2 — 1.99 z + 0.99

dt = 0.01
In [1]: from control import =x
In [2]: from supsictrl.ctrl_repl import d2c

In [3]: g=tf(1,[1,1,1])
In [4]: gd =c2d(g,0.01)
In [5]: g2=d2c(gd)
In [6]: print(g)

1

s"2 + s + 1

In [7]: print(g2)

1.729e—14 s + 1

s"2 + s + 1

2.11 Casting

The control.matlab module implements the casting functions to transform LTI systems to a
transfer function (tf) or to a state-space form (ss).
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In [8]: g = tf(sys)
In [9]: print(g)
1

s"2 + s + 1

and transfer functions into one of the state-space representation

In [10]: sys = ss(g)

In [11]: print(sys)

A= [ 0. —1]
[ 1. —1.]]
B=[[1.]

[ 0.]]

c=1[[ 0. —1.]]
D= 1[[ 0.]]

2.12 Models interconnection

Commands like parallel and series are available in order to interconnect systems. The op-
erators + and * have been overloaded for the LTI class to perform the same operations. In
addition the command feedback is implemented exactly as in Matlab.

In [1]: from control import =x

In [2]: gl=tf(1,[1,1])

In [3]: g2=tf(1,[1,2])

In [4]: print(parallel(gl,g2))
2s +3

s"2 4+ 3 s + 2

In [5]: print(gl+g2)

2 s+ 3

s"2 + 3 s + 2
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In [6]: print(series(gl,g2))

1

s"2 + 3 s + 2

In [7]: print(gl*g2)

1

s"2 + 3 s + 2

In [8]: print(feedback(gl,g2))

s + 2

s"2 4+ 3 s + 3




Chapter 3

System analysis

3.1 Time response

The Python Control toolbox offers own functions to simulate the time response of systems. For
Matlab users, the control.matlab module gives the possibility to work with the same syntax as
in Matlab. Please take care about the order of the return values!

Examples of time responses are shown in the figures 3.1, 3.2, 3.3, 3.4 and 3.5.

In

In

In

In

In

[1]:
[2]:
[3]:
[4]:

[5]:

: plt.grid ()

from control import x*

import matplotlib.pyplot as plt
g = tf(1,[1,1,1])

t,y = step_-response(g)

plt.plot (t,y)

.: plt.xlabel(’t")
: plt.ylabel(y’)

or alternatively

In

In

In

In

In

In

[1]:
[2]:
[3]:
[4]:
[5]:
[6]:

from control import x

from control.matlab import x*
import matplotlib.pyplot as plt
g = tf(1,[1,1,1])

y,t = step(g)

plt.plot (t,y)
: plt.xlabel(’t)
.. plt.ylabel(y’)
: plt.grid ()

1.2

1.0

0.8

> 0.6

0.4 -

0.2

0.0

Figure 3.1: Step response for continuous-time systems
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In [1]: from control import x

In [2]: from control.matlab import c2d

In [3]: import matplotlib.pyplot as plt

In [4]: g = tf(1,[1,1,1])

In [5]: gz=c2d(g,0.1)

In [6]: t=np.arange(0,16,0.1)

In [7]: tl,y = step_-response(gz,t)

In [8]: plt.step(t,y)

...t plt.grid ()

plt.xlabel(’t’)
plt.ylabel(’y’)

or alternatively

In [1]: from control import =x

In [2]: from control.matlab import =

In [3]: import matplotlib.pyplot as plt

In [4]: g = tf(1,[1,1,1])

In [5]: gz=c2d(g,0.1)

In [6]: t=np.arange(0,16,0.1)

In [7]: y,tl = step(gz,t)

In plt.step(t,y)

[8]f

plt.grid ()
plt.xlabel(’t’)
plt.ylabel(’y’)

Figure 3.2: Step response for discrete-time systems

CHAPTER 3. SYSTEM ANALYSIS

1.2

1.0

0.8

> 0.6

0.4

0.2

0.0
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3.1. TIME RESPONSE
In [1]: from control import =x
In [2]: import matplotlib.pyplot as plt
In [3] a:[[ozl]z[flvfl}]
In [4]: b=[[0],[1]]
In [5]: c¢=[1,0]
In [6]: d=]0]
In [7]: sys=ss(a,b,c,d)
In [8]: t,y=initial_-response (sys,
X0=[1,1])
In [9]: plt.plot(t,y)
...t oplt.grid ()
plt . xlabel (7t’)
plt.ylabel(’y’)
or alternatively
In [1]: from control import =x
In [2]: from control.matlab import x
In [3]: import matplotlib.pyplot as plt
In [4] : a::[[O 71] 7["1 74’1}]
In [5]: b=([[0],[1]]
In [6]: c¢=[1,0]
In [7]: d=[0]
In [8]: sys=ss(a,b,c,d)
In [9]: y,t=initial(sys,X0=[1,1])
In [10]: plt.plot(t,y)
... plt.xlabel(’t’)
plt.ylabel(’y’)
plt.grid ()

Figure 3.3: Continuous time systems - Initial condition response

1.4

-0.4
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In [1]: from control import =

In [2]: import matplotlib.pyplot as plt
In [3]: g = tf(1,[1,1,1])

In [4]: t,y = impulse_response(g)

In plt.plot (t,y)

[5].:

plt.grid ()
plt.xlabel (’t’)
plt.ylabel (’y’)

or alternatively

In

In

In

In

In

In

[1]:
[2]:
[3]:
[4]:
[5]:
[6]:

from control import x*

from control.matlab import x*
import matplotlib.pyplot as plt
g = tf(1,[1,1,1])

y,t = impulse(g)

plt.plot (t,y)

plt.grid ()

plt.xlabel(’t")
plt.ylabel (’y’)

)

Figure 3.4: Continuous time systems - Impulse response

CHAPTER 3. SYSTEM ANALYSIS

0.6
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3.1. TIME RESPONSE
1.0
In [1]: from control import =
In [2]: import matplotlib.pyplot as plt
In [3]5 g=tf([1,2],[1,2,3,4])
In [4]: t=linspace (0,6%pi)
In [5]: u=sin(t)
In [6]: t,y,x = forced_response(g,t,u)
In [7]: plt.plot(t,y)
...: plt.xlabel(’t’)

plt.ylabel(’y’)

plt.grid ()
or alternatively
In [1]: from control import =
In [2]: from control.matlab import =
In [3]: import matplotlib.pyplot as plt
In [4]: g=tf([1,2],[1,2,3,4])
In [5]: t=linspace (0,6%pi)
In [6]: u=sin(t)
In [7]: y,t,x = lsim(g,u,t)
In [8]: plt.plot(t,y)

...: plt.xlabel(’t’)
plt.ylabel(’y’)
plt.grid ()

Figure 3.5: Continuous time systems - Generic input

20
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3.2 Frequency analysis

CHAPTER 3. SYSTEM ANALYSIS

The frequency analysis includes some commands like bode_response, nyquist_response,
nichols_response and the corresponding Matlab versions bode, nyquist and nichols. (See

figures 3.6, 3.7 and 3.8)

In [1]: from control import x
In [2]:
In [3]: bode_plot(g, dB=True);

g
g=tf ([1],[1,0.5,1]) 3

g

=

or alternatively

In [1]: from control import =

In [2]: from control.matlab import x
In [3]: g=tf([1],[1,0.5,1])

In [4]: bode(g, dB=True);

_180 : e ; i
: 10° 10
Frequency (rad/sec)

Figure 3.6: Bode plot

The command margins returns the gain margin, the phase margin and the corresponding

crossover frequencies.

In [1]: from control import =x

In [2]: g=tf(2,[1,2,3,1])

In [3]: gm, pm, wg, wp = margin(g)

In [4]: gm # Gain,
Out[4]: 2.5000000000000013

In [5]: pm

Out[5]: 76.274075256921392 # deg
In [6]: wg

Out [6]: 0.85864877610167201 # rad/s
In [7]: wp

Out [7]: 1.7320508075688776 # rad/s

not dB!

In addition, the command stability_margins returns the stability margin and the correspond-
ing frequency. The stability margin values w, and s,,, which correspond to the shortest distance
from the Nyquist curve to the critical point —1, are useful for the sensitivity analysis.
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0.8
In [1]: from control import =
0.6 e DT T T e g
In [2]: import matplotlib.pyplot as plt 04 : /’:/ \\\
In [3]: g=tf([1],[1,2,1]) o2k
In [3]: nyquist_plot(g), plt.grid() 0.0
202
or alternatively ‘
—0.6l 0
-0.8 L ; L
In [1]: from control import * -10 -05 0.0 05 10
In [2]: import matplotlib.pyplot as plt
In [3]: from control.matlab import x
In [4]: g=tf(1,[1,2,1])
In [5]: nyquist(g), plt.grid()
Figure 3.7: Nyquist plot
0 Nichols Plot
In [1]: from control import x B R ' ST o
In [2]: g=tf(1,[1,2,3,4,0])
In [3]: nichols_plot(g) )
o !
° N -
2 ;. 760:0 a8
. g ‘86 dB (.1 iadia o
or alternatively s ¥ Y
_100k. £0G.Q \. 5100048
1200 d¥] $120.0.dH
In [1]: from control import = i .1§4Q§-Qd ,;1;40§.DdE
71507\ L . L1600 d I . L 160'G o
In [2]: g=tf(1,[1,2,3,4,0]) -700 -600 -500 ~-400 -300 -200 -100 0
’ Ty Phase (deg)
In [3]: nichols(g)

Figure 3.8: Nichols plot
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In [1]:
In [2]:
In [3]:
In [4]:
Out [4]:
In [5]:
Out [5]:
In [6]:
Out [6]:
In [7]:
Out[7]:
In [8]:
Out [8]:
In [9]:
Out [9]:

from control import
g:tf(27[1727371:|)
gmi pm’

Sm7 Wg7 wp’

gm
2.5000000000000013

pm
76.274075256921392

wg
1.7320508075688776

wp
0.85864877610167201

sm
0.54497577553096421

WS

1.3669371206538097

*

ws = stability _margins (g)

#

#

#

#

Gain not dB°

deg

rad/s

rad/s

rad/s

3.3 Poles, zeros and root locus analysis

Poles and zeros of an open loop system can be calculated with the commands pole, zero or
plotted and calculated with pzmap.
In addition there are two functions that implement the root locus command: rlocus and
root_locus. At present no algorithm to automatically choose the values of K has been imple-
mented: if not provided, the K vector is calculated in rlocus with log values between 1072 and
103. For the root_locus function the K values should be provided.
If in the jupyter shell you set the command %matplotlib qt, the root locus is plotted on an
external window and it is possible to get the values of gain and damp by clicking with the

mouse on the curves.

Clicked at —0.5724 +1.293j gain 1.722 damp
0.4048
Clicked at —1.119 +40.01874j gain 2.252 damp
0.9999
Clicked at —0.7545 +1.293j gain 1.114 damp
0.504
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In [1]: from control import =x

In [2]: from control.pzmap import pzmap
In [3]: g=tf([1,1],[1,2,3,4,0])

In [4]: g pole()

Out [4]:

array ([—1.65062919+0. ] ,
—0.17468540+1.54686889] ,
—0.17468540 —1.54686889] ,

0.00000000+0. j 1)
In [5]: g.zero()
Oout[5]: array([—1.])
In [6]: poles, zeros = pzmap(g), grid()
In [7]: poles
Out [7]:

array ([—1.6506291940.] ,
—0.174685404+1.54686889j ,
—0.17468540—1.54686889j ,
0.00000000+0. j 1)

In [8]: zeros
Out [8]: array ([—1.])

Figure 3.9: Poles

In [1]: from control import =
In [2]: g=tf(1,[1,2,3,0])
In [3]: rlocus(g);

or alternatively

In [1]: from control import =
In [2]: g=tf(1,[1,2,3,0])
In [3]: k=logspace(—3,3,100)
In [4]: root_locus(g,k);

2.0 ‘ I?ole Zero Map
151 X 4
1.0+ 4
0.5F 4
0.0
-0.51- 4
-1.01 -
-1.51 X T
-2.0 L L L
=2.0 -1.5 -1.0 -0.5 0.0 0.5
Re
and zeros
0.68 0.52 0.29
4To.ss
2 f.97 A
o { 7 -~
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-2 g —
—44
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Figure 3.10: Root locus plot
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Chapter 4

Modeling

The sympy module (symbolic python) contains a full set of operations to manage physical
systems. In particular, it is possible to find the linearized model of a mechanical system using
the Lagrange’s method or the Kane’s method. More details about the Kane’s method are
available at [6], [7], [8], [9], [10] and [11].

In the next sections we present the modelling of 3 plants that we can find in our laboratories
and that are quite familiar to us.

4.1 Model of a DC motor (Lagrange method)

4.1.1 Plant

In this first example we model a DC servo motor with a current input in order to find its
state-space representation. The motor is characterized by a torque constant k;, an inertia
(motor+load) J and a friction constant D,,.

The input of the plant is the current / and the output is the position ¢. The rotation center is
the point O, the main coordinates system is N and we add a local reference frame Nr which

rotates with the load (angle ¢ and speed w).

27
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4.1.2 Modules and constants

In [1]: from sympy import symbols, Matrix, pi
...: from sympy.physics.mechanics import =
import numpy as np

# Modeling the system with Lagrange method

# Signals
.t ph = dynamicsymbols(’ph’) # motor angle
: w = dynamicsymbols(’ph’, 1) # motor rTot.
speed
I = dynamicsymbols(’1") # input current

: # Constants

..: Dm = symbols(’Dm’) # friction
.t M, J = symbols('M-J) # Mass and inertia
: t = symbols(’t’) # time
kt = symbols(’kt’)

4.1.3 Reference frames

In [2]: # Reference frame for the motor and Load
...: N = ReferenceFrame(’'N’)

.t O = Point(’0") # center of rotation
: O.set_vel (N,0)

# Reference frames for the rotating disk

Nr = N.orientnew ('Nr’, ’"Axis’ ,[ph, N.x]) #
rotating reference (load)

Nr.set_ang_-vel (N,wxN.x)

4.1.4 Body and inertia of the load

In [3]: # Mechanics
Io = outer (Nr.x, Nr.x)

InT = (JxIo, O)

Last = RigidBody(’Last’, O, Nr, M, InT)
Last.potential_energy = 0

4.1.5 Forces and torques

In order to find the dynamic model of the plant we need some other definitions, in particular
the relation between angle ¢ and angular velocity w, the forces and torques applied to the
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system and a vector that contains the rigid bodies of the system.

In [4]: # Forces and torques
forces = [(Nr,(kt*I-Dmsw)=*N.x) |

4.1.6 Model

Using the Lagranges’s method is now possible to find the dynamic matrices related to the plant.

In [5]: # Lagrange model

: L = Lagrangian (N, Last) # Lagrange operator
: IM = LagrangesMethod (L, [ph], forcelist = forces,
frame = N)

: IM. form_lagranges_equations ()

: # symbolically linearize about arbitrary
equilibrium

: MM, linear_state_matrix , linear_input_matrix ,
inputs = IM. linearize (q-ind = [ph], qd-ind = [w])

4.1.7 State-space matrices

From the results of the Kane’s model identification, we can now extract the matrices A and B
of the state-space representation.

In [6]: A=MM.inv() * linear_state_matrix
...: B=MM.inv () x* linear_input_matrix

print (A)

: print (B)
Matrix ([[0, 1],
Matrix ([[0], [kt/J]]

4.2 Model of a DC motor (Kane method)

4.2.1 Plant

In this first example we model a DC servo motor with a current input in order to find its
state-space representation. The motor is characterized by a torque constant k;, an inertia
(motor+load) J and a friction constant D,,.
The input of the plant is the current / and the output is the position ¢. The rotation center is
the point O, the main coordinates system is N and we add a local reference frame Nr which
rotates with the load (angle ¢ and speed w).
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4.2.2 Modules and constants

n [1]: from sympy import symbols, Matrix, pi
: from sympy.physics.mechanics import x*
import numpy as np

. # Modeling the system with Kane method

: # Signals

ph = dynamicsymbols(’ph’) # motor angle
: w = dynamicsymbols(’w’) # motor rot. speed
I = dynamicsymbols(’1") # input current
... # Constants
..: Dm = symbols(’Dm’) # friction
: M, J = symbols( 'M-J") # Mass and inertia
t = symbols(’t’) # time
kt = symbols(’kt ") # torque constant

4.2.3 Reference frames

In [2]: # Reference frame for the motor and Load
...: N = ReferenceFrame(’N’")

..: O = Point(’0”) # center of rotation
: O.set_vel (N,0)

: # Reference frames for the rotating disk
Nr = N.orientnew (’Nr’, ’Axis’,[ph, N.x]) #

rotating reference (load)

Nr.set_ang_-vel (N, wxN.x)

4.2.4 Body and inertia of the load

In [3]: # Mechanics
Io = Jxouter (Nr.x, Nr.x)

InT = (Io, O)

..: B = RigidBody(’B’, O, Nr, M, InT)

4.2.5 Forces and torques

In order to find the dynamic model of the plant we need some other definitions, in particular
the relation between angle ¢ and angular velocity w, the forces and torques applied to the
system and a vector that contains the rigid bodies of the system.
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In [4]: # Forces and torques
...: forces = [(Nr,(kt*I-Dmsw)*N.x) ]
kindiffs = [(ph.diff(t)—w)]
bodies=[B]

4.2.6 Model

Using the Kane’s method is now possible to find the dynamic matrices related to the plant.

In [5]: # Model

kindiffs)

print (fr)

print(frstar)
Matrix ([[—Dmsw(t) + kt+I(t)]])
Matrix ([[—J*Derivative (w(t), t)]])

: KM = KanesMethod (N, q_ind=[ph],u_-ind=[w] , kd_eqs=

fr, frstar = KM. kanes_equations(forces ,bodies)

4.2.7 State-space matrices

31

From the results of the Kane’s model identification, we can now extract the matrices A and B

of the state-space representation.

equilibrium

inputs =
KM. linearize (new_method=True)

# sel the the equilibrium point
eq-pt = [0, O]
eq-dict = dict(zip ([ph,w], eq-pt))

.t MM = MM. subs (eq-dict)

.. # compute A and B matrices
: A =MM.inv () * f_A_lin)
B =MM.inv() * f_B_lin)

In [6]: # symbolically linearize about arbitrary

: MM, linear_state_matrix , linear_input_matrix ,

f_A_lin = linear_state_matrix.subs(eq-dict)
f_B_lin = linear_input_matrix.subs(eq_-dict)
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In [6]: print(A)
: print(B)

([0 1]

[0 —Dm/J]]

[[0]

[kt/J]]

4.3 Model of the inverted pendulum - Lagrange

The second example is represented by the classical inverted pendulum as shown in figure 4.1.

th, w

x1

4
F C

v () O

Figure 4.1: Inverted pendulum

The global reference frame is Nf (z, y) The point P is the center of mass of the pendulum. The
car is moving with speed v and position C. The pole is rotating with the angle th and angular
velocity w, In addition to the main coordinate frame Nf (x, y), we define a local body-fixed
frame to the pendulum Npend (z1, y1).
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Figure 4.2: Inverted pendulum - Real plant

4.3.1 Modules and constants

In [1]: from sympy import symbols, Matrix, pi, cos
: from sympy.physics.mechanics import x*
import numpy as np

, sin

# Modeling the system with Kane method

# Signals
x, th = dynamicsymbols(’x-th’)
v, w = dynamicsymbols(’x-th’, 1)
F = dynamicsymbols('F’)
d = symbols(’d’)
.. # Constants
: m, r = symbols(’'m-r’)
M = symbols (M)
g, t = symbols(’g-t’)
Ic = symbols(’Ic’)
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4.3.2 Frames - Car and pendulum
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In

[2}':

# Frames and Coord. system

. # Car

Nf = ReferenceFrame (’Nf’)

.: C = Point(’C")
: C.set_vel (Nf, vxNf.x)

Car = Particle (’Car’,C,M)

.t # Pendulum
.t A = Nf.orientnew (’A’,’Axis’ ,[th,Nf.z])
: A.set_ang_vel (Nf,wxNf.z)

.: P = C.locatenew ('P’,r*A.x)
: P.v2pt_theory (C,Nf,A)

Pa = Particle(’Pa’, P, m)

4.3.3 Points, bodies, masses and inertias

In

[3}.:

: Bp = RigidBody(’Bp’, P, A, m,

I = outer (Nf.z, Nf.z)
Inertia_tuple = (IcxI, P)

: Bp.potential_energy = msgkr+sin (th)

Car. potential_energy = 0

Inertia_tuple)

4.3.4 Forces, frictions and gravity

In

[4]:

# Forces and torques
forces = [(C,F«Nf.x—d*v«Nf.x) ,(P,0xNf.y)]
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4.3.5 Final model and linearized state-space matrices

In [5]: # Lagrange operator
...: L = Lagrangian (Nf, Car, Bp)

# Lagrange model

LM = LagrangesMethod (L, [x, th], forcelist =
forces , frame = Nf)

LM. form_lagranges_equations ()

# Equilibrium point
eq-pt = [0.0, pi/2,0.0,0.0]
eq-dict = dict(zip ([x,th,v,w], eq_-pt))

# symbolically linearize about arbitrary
equilibrium
: MM, linear_state_matrix , linear_input_matrix ,

inputs = LM. linearize (q-ind = [x, th], qd-ind [v,
w])
f_p-lin = linear_state_matrix.subs(eq-dict)
f_B_lin = linear_input_matrix.subs(eq_-dict)
: MM = MM. subs (eq._dict)
Atmp = MM.inv () * f_p_lin
Btmp = MM.inv () * f_B_lin
In [6]: Atmp
Out [6]:
Matrix ([
[07 0’
17
0],
[0, 0,
07
1}7
[0, grmkk2%rk*2/(—m**2xr*%2 + (Ic 4+ mxr**2)*«(M + m)), —d
#(Ic + mxr*%2) /(—m**2%r*%2 4+ (Ic + mkr**2)*(M + m)),
0]9
[0, gxmxr*x(M + m)/(—m**2*xr*x2 + (Ic + mkr*%2)*(M + m)),
—dsmekr /(—mxx2xrx%x2 4+ (Ic 4+ mer**2)«(M + m) ),
01])

In [7]: Btmp

Out [7]:
Matrix ([
[ o],
[ 0]7
[(Tc + mxr*x2)/(—m**2xr*%x2 + (Ic + mxr**2)«(M + m))],
[ mkr/(—mxk2kr*x2 + (Ic + mxr*x2)*«(M + m))]])
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4.4 Model of the inverted pendulum - Kane

The global reference frame is Nf (z, y) The point P is the center of mass of the pendulum. The
car is moving with speed v and position C. The pole is rotating with the angle th and angular
velocity w, In addition to the main coordinate frame Nf (x, y), we define a local body-fixed
frame to the pendulum Npend (z1, y1).

4.4.1 Modules and constants

In [1]: from sympy import symbols, Matrix, pi
...: from sympy.physics.mechanics import x*
import numpy as np

. # Modeling the system with Kane method

: # Signals

: x, th = dynamicsymbols(’x-th’)
: v, w = dynamicsymbols(’v-w’)

: F = dynamicsymbols(’F’)

..: # Constants
o d = symbols( d’) # friction
..: m, r = symbols(’'m-r’)
: M= symbols(’ )
g, t = symbols(’g-t’)
J = symbols(’J")

4.4.2 Frames - Car and pendulum

In [2]: # Frames and Coord. system

: # Car — reference x,y
..: Nf = ReferenceFrame (’Nf”)
..: C = Point(’C”)
: C.set_vel (Nf, vxNf.x)
Car = Particle(’Car’,C,M)

: # Pendulum — reference z1, yl
Npend = Nf.orientnew (’Npend’, Axis’ ,[th,Nf.z])
Npend.set_ang_vel (Nf,wxNf.z)

..: P =C.locatenew (’P’ ,r*Npend.x)
..: P.v2pt_theory (C,Nf,Npend)
: Pa = Particle(’Pa’, P, m)
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4.4.3 Points, bodies, masses and inertias

In [3]: I = outer (Nf.z, Nf.z)
Inertia_tuple = (JxI, P)
Bp = RigidBody(’'Bp’, P, Npend, m, Inertia_tuple)

4.4.4 Forces, frictions and gravity

In [4]: # Forces and torques
...: forces = [(C,F«Nf.x—d*v«Nf.x) ,(P,—mxgxNf.y)]
frames = [Nf,Npend]
points = [C,P]

kindiffs = [x.diff(t)—v, th.diff(t) — w]
particles [Car,Bp]

4.4.5 Final model and linearized state-space matrices

n [5]: # Model
...: KM = KanesMethod (Nf, q-ind=[x,th],u-ind=[v,w],
kd_eqs=kindiffs)
: fr,frstar = KM. kanes_equations (forces ,particles)

: # Equilibrium point
eq-pt = [0, pi/2,0,0]
eq-dict = dict(zip ([x,th,v,w], eq_pt))

: # symbolically linearize about arbitrary
equilibrium

: MM, linear_state_matrix , linear_input_matrix ,
inputs
KM. linearize (new_method=True)

# sub in the equilibrium point and the parameters
f_A_lin = linear_state_matrix.subs(eq-dict)

.t f_B_lin = linear_input_matrix.subs(eq-dict)
: MM = MM. subs (eq_dict)

.: # compute A and B
.. A=MM.inv () * f_A_lin
.t B=MM.inv () * f_B_lin
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In [6]: A

Out [6]:

Matrix ([

[07 07 1, 0]7

[07 07 07 1]7

[o, gk 2% k%2 /(J+#M 4+ Jsm + Memsr*x2) , —ds*(mss2sr %2/ ((
M + m) *(J+M 4+ J+m

+ Msmxr*x2)) + 1/M +m)), 0],

[0, gxmxr*x(M + m) /(J+M + Jxm + Msmsr*%2) |

—dsmxr /(J*M + J+m + Memsr*%2) , 0]])

In [7]: B
Out [7]:
Matrix ([

[

[

0]7
[mx*x2xr*%2/((M + m) *(J+«M + Jxm + Msmxr*%2)) + 1/(M 4+ m) ]
[ mkr /(J«M + Jsm + Mkmxr x%2) ]

0]:

)

And the results can be written in a better form as

0 1
0 0

gm2r2 d(Jc+mr2)
JeM+Jem+Mmr? JeM+Jem+Mmr?
gmr(M+m) _ dmr
JeM+Jem+Mmr? JeM~+Jem~+Mmr?

o O O O
o O = O

and

0

0
B = Jetmr?
JeM~+Jem~+Mmr?
mr

JeM+Jem~+Mmar?2

4.5 Model of the Ball-on-Wheel plant - Lagrange

A more complex plant is represented by the Ball-on-Wheel system of figure 4.3, where a ball
must be maintened in the unstable equilibrium point on the top of a bike wheel.

In this system we have 4 reference frames. The frame N is the main reference frame, NO rotates
with the line connecting the centers of mass of the wheel (O) and of the ball (CM2), N1 (x4,

y1) rotates with the wheel and N2 (x9, y2) is body-fixed to the ball.

The radius of the wheel and of the ball are respectively R; and Ry. The non sliding condition

is given by

Ry - pho = Ry - phi + Ry - pho

The input of the system is represented by the torque 71" applied to the wheel.
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Figure 4.3: Ball-On-Wheel plant

4.5.1 Modules and constants

In [1]: from sympy import symbols, Matrix, pi, sin, cos
: from sympy.physics.mechanics import =
# Lagrange Model of the system
# Index _b: angle between Wheel center and Ball CM
# Indexr _w: Wheel
# Index _roll: Ball

# Dynamic symbols
.: phi_b, phi_w, phi_roll = dynamicsymbols(’phi_b-
phi_w-phi_roll”)
: w.b, w.w = dynamicsymbols(’phi_b-phi_w’, 1)
w_roll = dynamicsymbols(’w_roll”)
T = dynamicsymbols(’T’)

# Symbols

Jow, J.b = symbols(’J_-w-J_b"’)
Mw, M.b = symbols(’M.w-Mb")
R.w, R.b = symbols(’R-w-R_b")
d-w = symbols(’d-w’)

g = symbols(’g’

t = symbols(’t
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4.5.2 Reference frames
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In [2]: # Mechanical system
...: N = ReferenceFrame (’N’)

O = Point (’0")
O.set_vel (N,0)

# Roll conditions
phi_roll = —(phi_w*R_w—phi_b*R.w)/R_b
w_roll = phi_roll.diff(t)

# Rotating azxes

# Ball rotation

# Wheel rotation

# Ball position

N_b = N.orientnew (’N_b’,’Axis’ ,[phi_b ,N.y])

N.w = N.orientnew (’N_w’,’Axis’ ,[phi-w ,N.y])
.t N_roll = N.orientnew (’N_roll’, Axis’ ,[phi_roll ,N.y

Iy
N.w.set_ang_vel (N,w.wxN.y)
N_roll.set_ang_vel (N, w_roll*N.y)
N._b.set_ang_vel (N, w_bxN.y)

4.5.3 Centers of mass of the ball

In [3]: # Ball Center of mass
: CM2 = O.locatenew ('CM2’ ,(R-w+R_b)*N_b.z)
CM2. v2pt_theory (O,N,N_b)

Out[3]: (R-b + R-w)*phi_b’«N_b.x

4.5.4 Masses and inertias

In [4]: # Inertia
...: Iy = outer(N.y,N.y)
InlT = (J.wxly, O) # Wheel
In2T = (J_bxly, CM2) # Ball

# Bodies
B_.w = RigidBody(’'B.w’, O, N.w, Mw, InlT)
B_r = RigidBody(’B.r’, CM2, N_roll, M., In2T)

B_r.potential_energy = (R.w+R_b)*M_bxg*sin (phi_-b)
B_w.potential_energy = 0
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4.5.5 Forces and torques

In [5]: forces = [(N_roll, 0«N.y) , (N.w, T«N.y) ]

4.5.6 Lagrange’s model and linearized state-space matrices

In [6]: # Lagrange operator
...: L = Lagrangian(N, B_.r, B.w)

: # Lagrange model

: LM = LagrangesMethod (L, [phi-b, phi_w],
= forces, frame = N)

: IM. form_lagranges_equations ()

forcelist

: # Equtlibrium point
eq-pt = [pi/2, 0, 0, 0]
eq-dict = dict(zip ([phi-b, phi_w, wb, w.w], eq_pt

)

: MM, linear_state_matrix , linear_input_-matrix,

inputs = ILM. linearize (q-ind=[phi-b, phi-w], qd-ind
— [wb, ww])

f_p_lin

linear_state_matrix.subs(eq_-dict)
f_B_lin

linear_input_-matrix.subs(eq-dict)

..: MM = MM.subs (eq-dict)
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In [7]: Atmp

Out [7]:
Matrix ([
[
07 07 17 0]7
[
07 07 07 1]7

[Mbsg*(R-b + Row)*(J_bxRwx*x2/R_b*x2 + J_w)/(—J_b**2xR_w
#x4 /R_b*+x4d + (J_b*xRwx*+2/R_b*%x2 + J_w)x*(J_bxR_wx*x2/R_b
*x2 + M_bx(R_b + Rw)=*%2)), 0, 0, 0],

[ J_b*M_bxR_wx**2%g*(R_b + Row) /(R_-b*x2x(—J_b*%2«R_w
xx4 /R b*xd + (J_b*xRwxx2/R_b*x2 + J_w)=*(J_bxR_w*%2/R_b
*x2 + M_bx(R_-b + Rw)=*x%2))), 0, 0, 0]])

In [8]: Btmp
Out [8]:
Matrix ([

[

0]7

0]7

[ J bxRow**2/(R_b*x2x(—J _bxx2xR_wxx4/
R-bx*x4 4+ (J_bxR-w*+2/R_bx*x2 + J_.w)*(J_-b*R_wx*2/R_bxx2
+ Mb*(R.b + Row)*x2)))],

[(J-b*xRowxx2/R_b*%2 + Mbx*(R.b + Row) *%2) /(—J_bxx2xR_w*x4/
R.bx*x4 + (J_bxR.w*+2/R_b**x2 + J_.w)x*(J_b*Rwx*2/R_bxx2
+ Mobx*(R.b + Rw)*%2))]])

or as formula

0 0 10
0 0 01
JaMyR3g , , JoMyRi Rog ] 00
A= J1JaR1+J1J9 Ro+J1 My Ry R3+J1 My R3+Jo Mo R3+J5 Mo R3 Ry J1Jo Ry+J1 Jo Ro+J1 Mg Ry R3+.J1 Mg R3+.J5 Mg R$+J9 Mo R3 Ry
2
J1MgR{Rag J1 M3R3g 00
(R1+R2)(J1J2+J1JVIQR%JrJQJ\lQR%) (R1+R2)(J1J2+J1M2R%+J2MQR%)
and
0
0
2 52 p2
B M2R2?R3 n L
= <J1+]V12R%)<J1‘12+J1]VI2R§+J21W2R%) Ji+MgR?
My Rq Ry

 JyJo+J1 My R3+J3 Mo RY

4.6 Model of the Ball-on-Wheel plant - Kane

In this system we have 4 reference frames. The frame N is the main reference frame, NO rotates
with the line connecting the centers of mass of the wheel (O) and of the ball (CM2), N1 (z,
y1) rotates with the wheel and N2 (x9, y2) is body-fixed to the ball.

The radius of the wheel and of the ball are respectively R; and Ry. The non sliding condition
is given by

Ry - pho = Ry - phi + Ry - pho
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The input of the system is represented by the torque T" applied to the wheel.

4.6.1 Modules and constants

In [1]: from sympy import symbols, Matrix, pi
: from sympy.physics.mechanics import =
import numpy as np

phO, phl, ph2 = dynamicsymbols(’phO-phl-ph2’)
: wl, w2 = dynamicsymbols(’wl-w2’)

: T = dynamicsymbols(’'T”)

.0 J1, J2 = symbols(’J1-J2")
: M1, M2 = symbols(’M1-M2")
R1, R2 = symbols(’R1-R2")
d1 = symbols(’dl’)
g = symbols(’g’)
t = symbols(’t ")

4.6.2 Reference frames

In [2]: N = ReferenceFrame(’'N’)

..: O = Point(’0”)
: O.set_vel (N,0)

ph0 = (Rlxphl+R2+ph2)/R1

: NO

. = N.orientnew (’N0’,’Axis’ ,[phO,N.z])
.: N1 = N.orientnew (’N1’,’ Axis’ ,[phl,N.z])
: N2 = N.orientnew (’N2’,’Axis’ ,[ph2,N.z])

.t Nl.set_ang_vel (N,wlxN.z)
: N2.set_ang_vel (N,w2«N.z)

4.6.3 Centers of mass of the ball

In [3]: CM2 = O.locatenew ('CM2’ ,(R1+R2)*N0.y)
: CM2.v2pt_-theory (O,N,NO)

Out [3]: (—Rl*phl’-—-R2xph2’)*NO0.x
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4.6.4 Masses and inertias

In

[4]: Iz = outer(N.z,N.z)
...t InlT = (J1xIz, O)
In2T = (J2xIz, CM2)

Bl
B2

RigidBody (’B1’, O, N1, MI, InlT)
RigidBody ('B2’, CM2, N2, M2, In2T)

4.6.5 Forces and torques

In

[56]: #forces = [(N1, (T-di1+wl)*N.z), (CM2Z—M2xg*N.y)]
forces = [(N1, T«N.z), (CM2—M2xg«N.y)]

kindiffs = [phl.diff(t)—wl,ph2.diff(t)—w2]

4.6.6 Kane’s model and linearized state-space matrices

In

In

In

KM. linearize (new_method=True)

[6]: KM = KanesMethod (N, q_ind=[phl, ph2],u_ind=[wl, w2
| ,kd_eqs=kindiffs)
: fr, frstar = KM. kanes_equations (forces ,[B1l, B2])

[7]: # Equilibrium point
eq-pt = [0, 0, 0, 0, O]
eq-dict = dict(zip ([phl,ph2,wl,w2, T], eq-pt))

[8]: # symbolically linearize about arbitrary
equilibrium
: MM, linear_state_matrix , linear_input_-matrix,
inputs =

# sub in the equilibrium point and the parameters
f_A_lin = linear_state_matrix.subs(eq-dict)

.t f_B_lin = linear_input_matrix.subs(eq_dict)

: MM = MM. subs (eq-dict)

# compute A and B
A =MM.inv () * f_A_lin
B =MM.inv () * f_B_lin
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In [9]: A
Out [9]:
Matrix ([

[0, 0, 1, 0],
[0, 0, 0, 1],

[~M2##2xR1%%2+R2%+2%g / ((R1 + R2) *(J1%J2 + J1xM2xR2%%2 + J2
*M2xR1%%2)) +

M2#R1%% 2% g s (M2%%2%«R1%%2%«R2% %2/ ((J1 + M2+*R1%%2)*(J1%xJ2 + J1
*M2+R2%%2 +

J2xM2+R1%%2)) + 1/(J1 + M2+R1%%2))/(R1 + R2), —M2xx2xR1xR2
*x3xg /((R1 +

R2)*(J1%J2 + J1xM2xR2x%2 + J2xM2xR1xx2)) + M2xR1xR2xg* (M2
#x2xR1%%2%R2%%2 /((J1 +

M2x«R1#%2) % (J1xJ2 + J1xM2+xR2xx2 + J2+«M2«R1x%2)) + 1/(J1 +
M2xR1xx2))/(R1 + R2),

07 0]7

—M2# 2% R1%%3%

R2xg /((R1 + R2) *(J1xJ2

+ J1+M2x«R2%%2 + J2x«M2xR1%%x2)) + M2xR1xR2*xg*(J1 + M2xR1%%2)
J((R1 + R2)*(J1%J2 +

J1+M2+xR2%%2 + J2xM2xR1%%2)) ,

~M2s##2%«R1%%2xR2%+2%g /((R1 + R2)*(J1%J2 4+ J1sM2+«R2%%2 + J2x
M2«R1x%2)) +

M2xR2xx2xg*(J1 + M2xR1xx2) /((R1 + R2)*(J1*xJ2 4+ J1xM2xR2x*x2
+ J2x«M2«R1x%2)), 0,

0]])
In [10]: B
Out [10]
Matrix ([
[

0]7
[

0]

)
[M2%#2+%R1%%2%R2%%2/((J1 + M2xR1%%2)*(J1%J2 4+ J1*xM2xR2#%2 +
J2xM2xR1xx2)) +
1/(J1 + M2xR1%x%2)],
[ —M2+«R1xR2/(
J1xJ2 + J1xM2xR2*x*x2 +
J2xM2xR1%%2) |])

45
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Chapter 5

Control design

5.1 PI+Lead design example

5.1.1 Define the system and the project specifications

In this first example we design a controller for a plant with the transfer function

= 557
The requirements for the control are
s =0
for a step input
PM > 60°

and

wge = 10rad/s
The controller can be written in the form

1+s-T;, 14+a-Tp-s

=K
C(s) s-T; 1+s-Tp

with a PI and a lead part.

We have to design the controller and find the values of T;, o, Tp and K. The full design is
performed using the bode diagram.

After installing the required modules, we can define the plant transfer function and the require-
ments of the project.

47
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In [1]: # Modules

In [2]: from matplotlib.pyplot import =x

In [3]: from control import =x
In [4]: from numpy import pi, linspace
In [5]: from scipy import sin, sqrt

In [6]: from supsisim.RCPblk import

In [7]: from supsictrl.ctrl_utils import =

In [8]: from supsictrl.ctrl_repl import x

In [9]: g=tf([1],[1,6,5])

In [10]: bode(g,dB=True);

In [11]: legend ([’G(s)’],prop={’size’:10})

Out [11]:

(<matplotlib.axes.AxesSubplot at 0x7f85b5193550 >,
<matplotlib.legend.Legend at 0x7f85b47e6950>)

In [12]: wgec = 10 # Desired Bandwidth

In [13]: desiredPM = 60 # Desired Phase margin

Figure 5.1 shows the bode diagram of the plant.
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Figure 5.1: Bode diagram of the plant

5.1.2 PI part

Now we choose the integration time for the PI part of the controller. In this example we set
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T; =0.15s

In [14]: # PI part
In [15]: Ti=0.15
In [16]: Gpi=tf([Ti,1],[Ti,0])
In [17]: print(”PI-part-is:-”, Gpi)
PI part is:
0.15 s + 1
0.15 s
In [18]: figure ()
Out [18]: <matplotlib.figure.Figure at 0x7{85b47eaall>
In [19]: bode(g,dB=True, linestyle="dashed’);
In [20]: bode(Gpixg,dB=True);
In [21]: legend (([’G(s)’, Gpi(s)*G(s)’]) ,prop={’size’:10})
Out[21]:

(<matplotlib.axes.AxesSubplot at 0x7f85b4806250 >,
<matplotlib.legend.Legend at 0x7f85b4303850>)

Figure 5.2 shows the bode plot of the plant with and without the PI controller part.
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Figure 5.2: Bode diagram: G (dashed) and Gpi*G
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5.1.3 Lead part

CHAPTER 5. CONTROL DESIGN

Now we can get the PM at the frequency wy. in order to calculate the additional phase contri-

bution of the lead part of the controller.

Now it is possible to calculate the lead controller by finding the values of a and T'p.

Figure 5.3 shows now the bode plot of the plant, the plant with the PI part and the plant with

In [22]: mag, phase ,omega = bode(Gpix*g,[wgc], Plot=False)
In [23]: ph = phase[0]
In [24]: if ph>=0:
R ph = phase[0] —360;
In [2]: Phase = —180+desiredPM
In [26]: dPM = Phase—ph

In [27]: print(” Additional-phase-from-Lead-part:-", dPM)
Additional phase from Lead part: 61.4144232114

In [28]: # Lead part
In [29]: dPMrad = dPM/180% pi
In [30]: alfa = (14sin(dPMrad))/(1—sin (dPMrad)) ;

In [31]: print(”Alpha-is:-”, alfa)
Alpha is: 15.4073552425

In [32]: TD = 1/(sqrt(alfa)xwgc);
In [33]: Glead = tf([alfaxTD,1],[TD,1])
In [34]: print(”Lead-part-is:-”, Glead)

Lead part is:
0.3925 s + 1

0.02548 s + 1

In [35]: figure ()
Out[35]: <matplotlib.figure.Figure at 0x7f85b43462d0>

In [36]: bode(g,dB=True,linestyle="dashed’);
In [37]: bode(GpixGleadxg, dB=True);

In [38]:

legend ((['G(s)’, Gpi(s)*G(s)’, Gpi(s)*GLead(s)*G(s)’]),
prop={’size ":10})

Out [38]:

(<matplotlib.axes.AxesSubplot at 0x7f85b43736d0 >,

<matplotlib.legend.Legend at 0x7f85b3b1f450>)

PI and Lead part
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Figure 5.3:
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Bode diagram - G (dashed), Gpi*G (dotted) and Gpi*GLead*G

5.1.4 Controller Gain

The last step is to find the amplification K of the controller which move up the bode gain plot
in order to obtain the required crossover frequency wye.

In

Out

In

In

In

In

Out

In [39]: mag,phase,omega = bode(Gpi*Glead*g,[wgc],Plot=
False)

In [40]: print(”Phase-at-wgc-is:-”, phase[0])

Phase at wgc is: —120.0

In [41]: K=1/mag[0]

In [42]: print(”Gain-to-have-MAG-at-gwc-0dB:-”, K)

Gain to have MAG at gwc 0dB: 23.8177769548

legend(k[ ’G(s)’,’Gpi(s)*G(s)’, Gpi(s)*GLead(s)*G(s)’,
"KxGpi(s)*GLead(s)*G(s) ' ])

(<matplotlib.axes.AxesSubplot at 0x7f85b3a76690 >,
<matplotlib.legend .Legend at 0x7f85b33e6f90 >)

[43]: figure ()
[43]: <matplotlib.figure.Figure at 0x7f85b3a703d0>

[44]: bode(g,dB=True, linestyle="dashed’);

[45]: bode(GpixGleadxg, dB=True,linestyle="—.");
[46]: bode (K«GpixGleadxg, dB=True);

[47]:

,prop={’size ’:10})
[47]:

In the figure 5.4 we
crossover frequency

see now that the gain plot has been translated up to get 0dB at the gain
Wae-
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Figure 5.4: Bode diagram - G (dashed), Gpi*G (dotted), Gpi*GLead*G (dot-dashed) and
K*Gpi*GLead*G

5.1.5 Simulation of the controlled system

Now it is possible to simulate the controlled system after closing the loop.

In [48]: Contr = K«GpixGlead

In [49]: print(”Full-controller:-”, Contr)
Full controller:
1.402 s"2 + 12.92 s + 23.82

0.003821 s"2 + 0.15 s

In [50]: mag,phase,omega = bode (KxGpixGleadxg,[wgc], Plot=
False)

In [51]: print(”Data-at-wgc-—-wgc: -7
:” ,mag[0], ”Phase:

” phase[0])

Data at wgc — wgc: 10 Magnitude: 1.0 Phase: —120.0

, omega[0], ”Magnitude

In [52]: gt=feedback (K«xGpixGleadxg,1)
In [53]: t=linspace(0,1.5,300)
In [54]: y,t = step(gt,t)

In [55]: figure()
Out [55]: <matplotlib.figure.Figure at 0x7f85b3514290>

In [56]: plot(t,y), xlabel(’t’), ylabel(’y’), title(’Step-
response-of -the

controlled -plant )

Out [56]:

([<matplotlib.lines .Line2D at 0x7f85b34252d0 >],

In [57]: grid ()
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The simulation of the controlled plant with a step input is shown in figure 5.5.

12 Step response of the controlled plant

ol S— T e —

0.4 oo

020 o]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 5.5: Step response of the controlled plant

5.2 Discrete-state feedback controller design

5.2.1 Plant and project specifications

In this example we design a discrete-state feedback controller for a DC servo motor.

We want to have a controlled system with a maximum of 4% overshooting and an error e,, = 0
with a step input. In addition we desire a bandwidth of the controlled system of at least 6
rad/s.

The step response of the motor with the current input of I;;, = 500mA) has been saved into
the file “MOT”.

5.2.2 Motor parameters identification

We try to find the parameters of the srvo motor using a least square identification from the
collected data.
The transfer function of the DC motor from input current /(s) to output angle ®(s) can be
represented as

L ®(s) KT
Lin(s)  s2+s-D/J
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5.2.3 Required modules

CONTROL DESIGN

In

In

In

In

In

In

In

: from

: from

: from

: from

: from

from
from

scipy.optimize import leastsq

scipy.signal import step2

: import numpy as np

: import scipy as sp

control import =x
control.Matlab import x*
supsisim . RCPblk import =x

supsictrl.ctrl_utils import =
supsictrl.ctrl_repl import x*

5.2.4 Function for least square identification

We define now the function residuals which returns the error between the collected and the
simulated data. Using this function we can try to minimize the error using a least square

approach.

In

In

[8]:

[9}f

# Motor response for least square identification

def

residuals(p, y, t):
[k,alpha] = p

g = tf(k,[1,alpha,0])
Y, T = step(g,t)
err=y—Y

return err

5.2.5 Parameter identification

We load the collected data to perform the parameter identification of the numerator K = K;/J
and the denominator value a« = D//J.



5.2. DISCRETE-STATE FEEDBACK CONTROLLER DESIGN 25

In [10]: # Identify motor

In [11]: x = np.loadtxt( 'MOT’);
In [12]: t = x[:,0]

In [13]: y = x[:,2]

In [14]: To 1000

In [15]: y1 = y/Io
In [16]: p0 = [1,4]

In [17]: plsq = leastsq(residuals, p0, args=(yl, t))

In [18]: kt = 0.0000382 # Motor torque constant
In [19]: Jm=kt/plsq [0][0] # Motor Inertia
In [20]: Dm=plsq [0][1]*Jm # Motor friction

In [21]: g=tf ([kt/Jm],[1,Dm/Jm,0]) # Transfer function

5.2.6 Check of the identified parameters

The next step is to check how good our parameters have been identified by comparing the
simulated function with the measured data (see figure 5.6)

In [22]: Y,T = step(g,t)

In [23]: plot(T,Y,t,yl), legend((’Identified-transfer-
function’,’Collected
data’) ,prop={’size ’:10},loc=2), xlabel(’t’), ylabel(’y’),
title (’Step
response’), grid ()
Out[23]:
([<matplotlib.lines.Line2D at 0x7fb9alb6b590 >,
<matplotlib.lines.Line2D at 0x7fb9alb6b710 >],
<matplotlib.legend.Legend at 0x7fb9alb6bbl0 >,
<matplotlib.text.Text at 0x7fb9a3cec310 >,
<matplotlib.text.Text at 0x7fb9alb8b910 >,
<matplotlib.text.Text at 0x7fb9alb3cbd0 >,
None)

5.2.7 Continuous and discrete model

For the state controller design we need to model our motor in the state-space form. We define
the continuous-state and the discrete-state space model
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Figure 5.6: Step response and collected data

In [24]: # Controller Design

In [25]: a=[[0,1],[0, Dm/Jm]]

In [26]: b=[[0],[1]]

In [27]: c=[[kt/Jm,0]];

In [28]: d=[0];

In [29]: sysc=ss(a,b,c,d)
state —space form

In [30]: Ts=0.01

In [31]: sys = c2d(sysc,Ts, zoh’)
form

Motor 1

# Continuous

# Sampling time

# Discrete ss

5.2.8 Controller design

For the controller we set a bandwidth to 6 rad/s with a damping factor of £ = V2 /2.
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In [32]: # Control system design

In [33]: print(rank(ctrb(sys.A,sys.B))==2) #
Controllability check

True

In [34]: # State feedback with integral part

In [35]: wn=6

In [36]: xi=np.sqrt(2)/2

In [37]: angle = np.arccos(xi)

o7

We add a discrete integral part to eliminate the steady state error and we obtain an additional
state for the error between reference and output signal. The two matrices ® and I' required by
the pole placement routine must be extended with the additional state.

In

In

In

In

In

In

In

In

In

[38]: cl_poles = —wnxarray ([1, exp(lj*angle), exp(—1j=x
angle)] ) # three poles

[39]: cl-polesd=sp.exp(cl_-polesxTs) # Desired
discrete poles

[40]: szl=sp.shape(sys.A);
[41]: sz2=sp.shape(sys.B);

[42]: # Add discrete integrator for steady state zero
error

[43]: Phi_f=np.vstack ((sys.A,—sys.CxTs))
[44]: Phi_f=np.hstack ((Phi_f,[[0] ,[0] ,[1]]))
[45]: G_f=np.vstack ((sys.B,zeros((1,1))))

[46]: k=place(Phi_-f ,G_f,cl_polesd)

5.2.9 Observer design

Now we can implement the observer: in this example we choose a reduced-order observer and

we can use the function provided by the pysimCoder module to obtain it.
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Observability check

In [47]:
In [48]:
True

In [49]:
In [50]:
In [51]:
In [52]:

#Reduced order observer

print (rank (obsv(sys.A,sys.C))==2) #

p-oc=—10xmax(abs(cl_poles))
p-od=sp.exp(p-ocxTs);
T=[0,1]

r_obs=red_obs(sys,T,[p-od])

5.2.10 Controller in compact form

The pysimCoder function comp_form_i allows to integrate the controller gains and the observer
into an unique block.

In

In

[53]:
form

[54]:

# Controller + integral + observer im compact

contr_I=comp_form_i(sys,r_obs k)

5.2.11 Anti windup

The last operation consists in dividing the controller into an input part and a feedback part in
order to realize the anti-windup mechanism and considering the saturation block.

In

In

[565]:

[56]:

# Anti windup

[gss_in, gss_out]=set_aw (contr_I ,[0,0])

5.2.12 Simulation of the controlled plant

The block diagram of the final controlled system is represented in figure 5.7.
It is not possible to simulate the resulting system in a Python shell because of:

e The controller is discrete and the plant is continuous. At present it is not possible to
perform hybrid simulation usin the control package. In some cases we can substitute the
plant with the discrete-time system and perform a discrete simulation. Hybrid simulation
is possible using the pysimCoder application described in the next chapter.

e The block “CTRIN” has two inputs. The step function can only find the output from a

single input.
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REF Gs)
J
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Figure 5.7: Block diagram of the controlled system

29

RT Plot

e The control toolbox can handle only linear system (and there is a saturation in the final

system).

A possible method for the simulation of hybrid systems is described in chapter 6.
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Chapter 6

Hybrid simulation and code generation

6.1 Basics

CACSD environments usually offer a graphical editor to perform the hybrid simulation (Matlab<>Simuli
Scioslab<>Scicos, Scilab<»xCos etc.).

The “pysimCoder.py” application should cover this task for the Python Control environment.

In the following we’ll explain how it is possible, from the pysimCoder schematics, to generate

code for the hybrid simulation. Code for the RT controller can be generated in the same way:

users should only replace the mathematical model of the plant with the blocks interfacing the
sensors and the actuators of the real system.

6.2 pysimCoder

6.2.1 The editor

The application “pysimCoder® is a block diagram editor to design schematics for simulation
and code generation.

Starting points for the pysimCoder application were the PySimEd project ([12]) and the
qtnodes-develop project ([13]).

PyEdit offers the most used blocks in control design. A little set of these blocks is shown in
figure 6.1.

6.2.2 The first example

Using the editor we wont create the block diagram of figure 6.2.
We open a shell and we give the command

pysimCoder

The application opens 2 windows as shown in figure 6.3

The window on the left shows the library with the available blocks and on the right we have
the diagram window. Now we can start to draw our block diagram.

From the library window we can choos the tab "input“ and using ”drag and drop“ we can get
the block ”Step“ and move it into the editor window. We can do the same operation with the
"LTT continous“ (from tab ”linear®) and the "Plot*“ (from tab ”output®) blocks.
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o R
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Figure 6.1: Some pysimCoder blocks for control design

T

Step LTI_continous Plot

Figure 6.2: The first example
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Figure 6.3: The pysimCoder environment

Now we should obtain the diagram shown in figure 6.4

G(s)

Step LTI_continous Plot

Figure 6.4: Result from the drag and drop operations
Before starting with the connection, we set some parameters to the blocks.

e Souble click with the mouse on the block ”LTT continous“. In the dialog windows set the
System to tf(1,[1,1])

e Click the right mouse on the LTI continous block“. In the new menu choose ”Change
Name*® and rename it as Plant.

e Click the right mouse on the Plot block. In the new menu choose “Block 1/Os” and set
the number of inputs to 2.

Figure 6.5 shows the new diagram.
Now we can proceed with the connections.
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.

Step LTI _continous Plot

Figure 6.5: Result after parametrization

Move the mouse on the output of the block “Step”: the mouse pointer should become a
“cross”. Click and release the left mouse button.

Now we can move the mouse to the input of the block “Plant”: the mouse pointer should
become a “cross”. Click and release the left mouse button.

Do the same operation from the output of the block “Plant” to the second input of the
block “Plot”

Now move to the node (the little circle) between the “Step” and the block “Plant”: the
mouse pointer should become a “cross”. Click and release the left mouse button.

move the mouse up, click, and continue to move left the mouse. Left of the position of the
block “Plot”, click and release again the left mouse button and then finish the connection
on the first input of the block “Plot” (click and release the left mouse button)

You should obtain the diagram of figure 6.2
Now we are able to simulate the diagram.

e From the menu “Simulation” choose “Simulate” or click on the button “Simulate” on the

toolbar (the button with the triangle).

e Double click with the mouse on the block “Plot” to get the graphical output of the

simulation (see figure 6.6).

6.2.3 Some remarks

e the simulation result (Plot) is available only after the simulation. Please be sure to

restart the simulation before opening the plot result. The simualtion creates a file with
the name of the block in “/tmp” folder: this file is overwritten by every new simulation.

e For the simulation, the application creates and compile a C-executable. The sources are

written in the folder “xxxxxx_gen”, where “xxxxx” is the name of the diagram.
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Figure 6.6: Result (plot) of the simulation

6.2.4 Defining new blocks

The user can define new blocks and integrate them into the pysimCoder application.
Two applications help the user todefine a new block.

o defBlocks

e xblk2Blk

The first application (defBlocks) is used to generate the “.xblk” file, with the default values of
the block, by simply filling the different fields and adding the parameters on the bottom (seee
figure 6.7).

The parameters in the window represent:

Library is the name of the “tab” window in the pysimCoder library
Name is the name of the block which appears under the block in the editor

Icon is the name of the icon file (located under “resources/blocks/Icons” without the extension
( “,SVg” )

Function is the name of the “.py” block which translates the block into the RCPBIk class
objects (see code generation)

Inputs : number of the input ports

Outputs : number of the output ports

input settable is a flag which indicates if the number of input ports can be changed or not
output settable is a flag which indicates if the number of output ports can be changed or not
Bottom window is a grid which contains the parameters of the block (Label4-default value).

Help contains an help about the block and the fields.
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File

MainWindow A - O X
-,
H &
Library : linear Inputs : 1 |»
Name : LTI_continous Cutputs : 1|+
Icon: CSS Input settable: v

Output settable: v

Function cssBlk - -
insert insert
. ) above after ‘ ‘
Please don't use "' in the Label field!
Label Default value
1|System H(1,01,10)
2|Initial conditions 0

Help

This block implements a linear continous dynamic system.
It can be defined as transfer function (control.tf) or as state space system (control.ss)
Parameters:

LTI continous system
Initial conditions of the state(s) as array, or "0" (all states have 0 initial conditions)

Figure 6.7: The “defBlocks” application
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L xblk2blk
File

Nr. of continous states: 0 -
Feed forward u->y
Nr. of discrete states: 0 -
Generate . Generate
. Save Function
Function

skeleton program

Label Value Var Name Type

Gains 1 K Real

from supsisim.RCPblk import RCPblk
from scipy import size

def matmultBlk(pin, pout, K):

Call: matmultBlk{pin, pout, K)

Parameters

pin: connected input port(s)
pout: connected output port(s)
K:Gains

Figure 6.8: The “xblk2BIk” application
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The “Save” or “Save as” operation generates the “.xblk” file. This file must be placed under
“resources/blocks/blocks”

The second step is to call the application “xblk2BIk” (see figure 6.8).

After opening the “.xblk” file, it is possible to set a name and a type of each parameters of the
block.

These informations are used to generate the “.py” which can be modified and saved and the
“* ¢* skeleton, which should be modified for the specific block tasks.

The “.py” file must be moved in the folder “resources/blocks/rcpBlk”, the “*.c* file must be
edited and stored under " CodeGen/XXX /devices“ where ” XXX * represents the specific target.

¢

6.3 Special libraries and blocks

6.3.1 The "tab“ of the library

All the blocks are available in different ”tabs“ on the left of the library panel. The ” Common
tab is a special library that can be personalized from the user whit his more used blocks.

The application ”configlibs“ allow to choose the library that must be shown in the library
panel.

6.4 The editor window

6.4.1 The toolbar

The application offers set of operations in the toolbar as shown in the figure 6.9.

- untitled

Library File Edit Simulation Settings Communication

H & = & T [ o s @ jhomesbucher - | &

Figure 6.9: The pysimCoder application

6.4.2 Operations with the right mouse button

Depending on the position of the mouse, clicking and releasing the right mouse button leads to
different behaviours.
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6.4.3 Operations with the right mouse button on a block

Clicking with the right mouse button on a block opens a popup menu with the following
commands:

Block I/Os to modify (if possible) the number of input and output ports of the block
Flip block Flip left/right the block
Change name Each block in the diagram must have a unique name

Block parameters to modify the parameters: this operation is available with a double click
tool

Clone block to get a copy of the selected block

6.4.4 Operations with the right mouse button on multiple selected
blocks

Clocking with the right mouse button on a blocck between multiple selected blocks allows to
generate a subsystem.

6.4.5 Operations with the right mouse button on a connection

Moving the mouse on a connection, change the pointer to a pointing hand and by clicking with
the right mouse button a popup menu is opened with the following commands:

Start connection Insert a node and start a new connection

Delete connection deletes the pointed connection

6.4.6 Behaviour of the left mouse button by drawing a connection

Clicking the left mouse button by drawing a connection starts a new segment of this connection.

6.4.7 Behaviour of the right mouse button by drawing a connection

Clicking the right mouse button by drawing a connection abort the connection.

6.5 Basic editor operations

6.5.1 Inserting a block

Get a block from a library and drag it into the main window.
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6.5.2 Connecting blocks

It is possible to connect blocks with usual operations:

e Starting from an output port of a block and moving to an input port of another block.
Mouse button can be released or not during this operation.

e Starting from an input port of a block and moving to a connection or an aoutput port of

a block.

e Starting from a connection (after clicking with the right mouse button and choosing ” Add
connection ),

6.5.3 Deleting a block

e Move to a block and click with the right mouse button.

e Choose the submenu ”delete®

It is also possible to select a block and use the "DEL* key.
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Simulation and Code generation

Each element of a block diagram is defined with three (or in special cases four) functions:

The interface function that describes how the block must be drawn in the block diagram

The Implementation function that contains the code to be executed to perform the tasks
related with this block.

The translation of the block into the RCPblk class described in the RCPblk.py module.

If required, a particular dlg function to implement a special dialog box for the block parame-
ters.

7.1 Interface functions

Each block is defined into a file with extension “.xblk”, stored in the “resources/blocks/blocks”
folder. The file is defined as a Python dictionary:

{
"1ib": "math",
"name": "Sum",
l|ip|l: 2’
"op": 1,
"stin": 1,
"stout": O,
"icon": "SUM",
"params": "sumBlk|Gains: [1,1]",

"help": "This block get the weighted sum of the input signals.\n\nIt can have more than 2 inputs.\n"
}

using the following fields:

“lib” the name of the tab for the block library (example “tab”:“linear”)
“name” the default name of the block

“ip” number of inputs

“op” number of outputs

“stin” flag which indicates if the number of inputs can be modified
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“stout” flag which indicates if the number of outputs can be modified
“icon” the name of the “.svg” file with the icon of the block

“param” the parameters of the block

The first string in the param field is used as name of the Python function used to prepare the
block to be translated into C-Code.
The block libraries are loaded after launching the pysimCoder application as shown in figure 7.1

Library File Edit Simulation Settings Communication

= s 5 @ = w B

ARZINO

common

LTI_continous

=
=]
E=
m
=
=
5
£
5
=]
15}

LTI_discrete

input

linear

math

nonlin

Plotjuggler

uttx

[ a]

Figure 7.1: Window with the block libraries

Each block must be renamed with a unique name (popup menu “Change name”), and its
parameters can be modified directly in the pysimCoder application with a double click.

7.2 The implementation functions

In a schematic, each block can be described with the functions (7.1) for continuous-time systems
or (7.2) for discrete-time systems.

= g(x,u,t)
y_ (7.1)

<
ES

|
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»
T
c
T
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7.2
Xk+1 = f(Xk7 Ug, kj) ( )
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The g(. ..) function represents the static part of the block. This function is used to read inputs,
read sensors, write actuators or update the outputs of the block.

The second function (f(...)) is only required if the block has internal states, and it is only used
by dynamic systems. In addition, each block implements two other functions, one for the block
initialization and one to cleanly terminate it.

All these functions are programmed as C-files, compiled and archived into a library.

7.3 'Translating the block into the RCPblk class

Before generating the C-Code, each block in the diagram must be translated into an element of
the RCPblk class (see section 7.7 for more details). For each block, the corresponding function
(the name is given by the 1. string in the parameters line) must exists and should be declared
with the required parameters. This function is responsible to fill all the RCPblk fields.

7.4 Special dialog box for the block parameters

Usually, the graphic editor build a simple dialog box to enter the block parameters. In this
dialoh, a “HELP” button open a MessageBox showing the block specific help text.

In special cases, it is possible to write a special function to enter the parameters.. In this case,
the user should provide this function in the RCPDIg.py file. The name of this function is built
using the first string of the parameter line, by subsistuting the las 3 letters “Blk” with “Dlg”.
This new function must receive as input:

e Numper of inputs
e Number of outputs

e The parameters line

This function returns a modified parameters line. Anexample is the “PlotDlg” function in the
file “toolbox/supsisim/src/RCPGDIg.py”.

7.5 Example

We can show with an example what happens with a block in the different phases from block to
RCPblk class.

The “Pulse generator” input block is stored in the “PulseGenerator.xblk” file with the following
infos

{
"1ib": "input',
"name": "PulseGenerator",
n ipll : O s
n Opll : 1 ,

"stin": O,
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"stout": O,

"icon": "SQUARE",

"params": "squareBlk|Amplitude: 1: double|Period: 4: double|Width: 2: double|Bias:
"help": "This block implements a Pulse input signall\n\nParameters:\nAmplitude\nPerj

}

The block has no inputs, 1 ouput, the I/O are not modifiable (settable=0).
After a double click on the block, the “params” field is parsed and translated into the the dialog
box shown in figure 7.2.

- stjuareBlk A X
Amplitude |1|
....................... : Period a
H H ’7 P Width 2
e
Delay 0
HELP
OK CAMNCEL

Figure 7.2: Dialog box for the Pulse generator block

By generating the element of the class RCPblk, the function “squareBlk” is called with the
following parameters:

SQUARE = squareBlk(pout, Amp, Period, Width, Bias, Delay)

where

pout is the matrix with the id of the inputs (connections)
Amp is the signal amplitude

Period is the period of the signal

width is the duration where the signal has value “Amp-bias”
bias is an offset for the signal

delay represent the time wenn the signal start

The function translate the block into the following object of the RCPblk class
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Function ! square

Input ports : [

Output ports : [2]

Nr. of states : [0 0]

Relation u->y : 0

Real parameters :[1 4 2 00]

Integer parameters : []

7.6 The parameters for the code generation

Before clicking on the “code generation” tool on the toolbar, the user should fill some parameters
in a dialog box (see figure 7.3).

pysimCoder.py a X

Template Makefile |sim.tmi| BROWSE...
Parameter script BROWSE...
Additional Objs BROWSE...
Priority

sampling Time  0.01

Final Time 10

OK CANCEL

Figure 7.3: Dialog for code generation

In this dialog it is possible to choose the “template makefile” for simulation or real-time ex-

ecution, the sampling time of the system and some additional libraries, required by special
blocks.

7.7 'Translating the diagram into elements of the RCPdlg
class

After this first setup it is possible to translate the block diagram into a list of elements of
the class RCPblk provided by the suspisim package. This class contains all the information
required for the code generation.

This class contains the following fields:

fcn: the name of the C-Function to be used to handle this block
pin: an array containing the id of the input nodes

pout: an array containing the id of the output nodes

nx: the number of internal states (continuous or discrete)

uy: a flag which indicates a direct dependency between input and output signals (feed-through
flag).

realPar: an array containing the real parameters of the block
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intPar: an array containing the integer parameters of the block

str: a string related to the block

For example, the diagram in figure 7.4 is translated into the following code

from supsisim.RCPgen import =
from control import x

LTI_continous_-0 = cssBlk ([3],[1], tf(1,[1,1]),
Print_1 = printBlk ([2,1])

Step-2 = stepBlk ([2], 1, 0, 1)

Sub_3 = sumBIlk ([2,1],[3], [1,—1])

# 0.

blks = [LTI_continous-0,Print_1,Step-2,Sub_3,]
fname = ’step’

os.chdir (”./step_gen”)

0)

#[...]
import os

os.system (”make” )
os.chdir (7 ..7)

genCode (fname, 0.01, blks)
genMake (fname, ’sim.tmf’, addObj = )

os.system (”make-clean”)

()

Step

1

LTI_continous Print

Sub

Figure 7.4: Simple block diagram

The block CSS has one input connected to node @ and one output connected to node ®), it is
a continuous transfer function (cssBlk, 1/(s 4 1)) with zero initial conditions. The PM block
has 2 inputs connected to node @ and @, one output connected to node @ and performs a
subtraction of the output from the input signals.
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7.8 Translating the block list into C-code

7.8.1 Finding the right execution sequence

Before starting with the translation of the block diagram into C-code, we need to find the
correct sequence of execution of the blocks. This task can be performed by analizing the uy
flag of the block object. When in a block the uy flag is set to 1, we need the output of the
blocks connected at his input before starting to update his output. This means that we have
to generate a dependency tree of all the blocks and then we must rearrange the order of the
block list for code generation.

In linear blocks for examples, the uy flag is set if the D matrix is not null.

In the blockdiagram of figure 7.4, the PM and the PRINT blocks require to know their inputs
before update their outputs.

If the block diagram contains algebraic loops it is not possible to find a solution for the det-
BlkSeq function and an error is raised.

The next code paragrapg shows the right sequence of block execution, after the ordering algo-
rithm. This is probably the only difficult task in code generation!

This is the list before ordering;:

In [3]: for el in blks:
co print (el .name)

LTI_continous_-0
Print_1

Step-2

Sub_3

and this is the ordered list

In [4]: for el in ordered_list:
print (el .name)

LTI_continous-0
Step-2

Print_1

Sub_3

The complete list of the ordered block is consequently:
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NrOfNodes = 3
ordered_list = detBlkSeq(NrOfNodes, blks)

for el in ordered_list:

print (el)
Block Name : LTI_continous_0
Function : css
System path : /LTI_continous
Input ports ¢ [3]
Output ports : (1]
Input dimensions : [1.]
Output dimensions : [1.]
Nr. of states : [1 0]
Relation u—>y : 0
Real parameters : [[ 0. —1. 1. 1.
Names of real parameters : []
Integer parameters : [1 1 1 1 2 3 4 5]

Names of integer parameters : []
String Parameter

Block Name : Step-2
Function : step
System path : /Step
Input ports : ]
Output ports : (2]
Input dimensions : []
Output dimensions : [1.]

Nr. of states : [0 0]
Relation u—>y : 0

Real parameters : [1 0 1]
Names of real parameters : [’Step-Time’,

"Final - Value’ ]
Integer parameters : []
Names of integer parameters : []
String Parameter

Block Name : Print_1
Function : print
System path : /Print
Input ports o [2 1]
Output ports : (]
Input dimensions : [1. 1.]
Output dimensions : []

Nr. of states : [0 0]
Relation u—>y 1

Real parameters : ]

Names of real parameters : []
Integer parameters : []

Names of integer parameters : []
String Parameter

Block Name : Sub_3
Function : sum
System path : /Sub
Input ports o [2 1]
Output ports ¢ [3]
Input dimensions : [1. 1.]
Output dimensions : [1.]

Nr. of states : [0 0]
Relation u—>y 1

Real parameters [ 1 —1]

Names of real parameters : []
Integer parameters : []

Names of integer parameters : []
String Parameter

’Initial -Value’,
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7.8.2 Generating the C-code

Starting from the ordered list of blocks, it is possible to generate C-code.
The code contains 3 functions:

e The initialization function
e The termination function

e The periodic task

7.8.3 The init function

In this function each block is translated into a python_block structure defined as follows:

typedef struct {
int nin; /* Number of inputs x*/
int nout; /+ Number of outputs x*/
int * dimln; /+ Port signal dimension x/
int * dimOut; /+ Port signal dimension x/
int *nx; /% Cont. and Discr states x/
void xxu; /* inputs x/
void xxy; /+ outputs =/
double *realPar; /* Real parameters x/
int realParNum; /+* Number of real parameters x/
int xintPar; /+ Int parameters x/
int intParNum; /+* Number of int parameters */
char * str; /* String x/
void * ptrPar; /+ Generic pointer x/
char xxrealParNames; /+ Names of real parameters x*/
char xxintParNames; /+ Names of integer parameter x/
} python_block;

The nodes of the block diagram are defined as “double” variables and the inputs and outputs
of the blocks are defined as vectors of pointers to them.

/+ Nodes x/
static double Node_1[] = {0.0};
static double Node 2[] = {0.0};
static double Node_3[] = {0.0};
/* Input and outputs =/
static void *inptr_0[] = {&Node_3};
static void xoutptr_0[] = {&Node_1};
static void *outptr_1[] = {&Node-2};
static void *inptr_2[] = {&Node.2,&Node_1};
static void *inptr_-3[] = {&Node-2,&Node_1};
static void *xoutptr_3[] = {&Node_3};
block_step [0].nin = 1;
block_step [0].nout = 1;
block_step [0].nx = nx_0;
block_step [0].u = inptr_0;
block_step [0].y = outptr_0;
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After this initialization phase, the implementation functions of the blocks are called with the
flag INIT.

/* Set initial outputs x*/

css (CG.INIT, &block_step [0]
step (CG_INIT, &block_step [1
print (CG_INIT, &block_step |
sum(CG_INIT, &block_step [3]

)
:

)
1)
2]);
)

7.8.4 The termination function

This procedure calls the implementation functions of the blocks with the flag END.

7.8.5 The ISR function

This procedure represents the periodic task of the RT execution. First of all, the implementation
functions are called with the flag OUT, in order to perform the output update of each blocks.
As a second step, the implementation functions of the block containing internal states (nx # 0)
are called with the flag STUPD (state update).

css (CGOUT, &block_step [0])
step (CG.OUT, &block_step [1]
print (CG.OUT, &block_step [2
sum(CG.OUT, &block_step [3])

)
}.);

h = step_get_tsamp () /10;

block_step [0].realPar [0] = h;
for (i=0;i <10;i++){
css (CG.OUT, &block_step [0]);
css (CGSTUPD, &block_step[0]);

}

7.9 The main file

The core of the RT execution is represented by the “python_main rt.c” file. During the RT
execution, the main procedure starts a high priority thread for handling the RT behavior of
the system. The following main file, for example, is used to launch the executable in a Linux
preempt_rt environment.
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void *rt_task (void x*p)

{

param.sched_priority = prio;

if (sched_setscheduler (0, SCHED_FIFO, &param)==—1){
perror (”sched_setscheduler-failed”);
exit(—1);

double Tsamp = NAME(MODEL, _get_tsamp) () ;

NAME(MODEL, _init) () ;

while (!end){
/* wait untill next shot =/
clock_nanosleep (CLOCKMONOTONIC,
TIMER_ABSTIME, &t, NULL):

/+ periodic task x*/
NAME(MODEL, _isr ) (T) ;

}
NAME(MODEL, _end ) () ;

81
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Chapter 8

Example

8.1 The plant

One of the educational plants available at the SUPSI laboratory is the system shown in fig-
ure 8.1. This example is located in to the “pycontrol/Tests/ControlDesign/DisksAndSpring”
folder,

Figure 8.1: The disks and spring plant

Two disks are connected by a spring. The goal for the students is to control the angle of the
disk on the right by applying an appropriate torque to the disk on the left.

The physical model of this plant can be directly calculated in python using for example the
sympy toolbox. Sympy can deliver a symbolic description of the system and through a python
dictionary it is possible to easily obtain the numerical matrices of the state-space representation
of the plant.
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In [1]: # Real plants parameters
...: # Motor 1

jml = 0.0000085 # inertia [kg+m2]
ktl = 0.0000382 # Torque constant
dl = 0.0002953 # Damp
# Last motor 1
rho_ac = 7900 # density [g/m3]
rvl = 0.065 # radius [m]
hvl = 0.01 # thickness [m]
mvl = ((rho-ac*(rvl#*%2))*np.pi)=«hvl # mass [kg]
jvl = (mvlx(rvlxx2))/2 # inertia [kg+m2]
J1 = jvl+jml # total inertia [kg+m2]

In # Motor 2

[Q]f

*m2]

jm2 = 0.000003 # inertia [kg*m2]
kt2 = 0.0000205 # Torque constant
d2 = 0.0004001 # damp

# Last motor 2
rho_ac = 7900 # density [kg/m3]

rv2 = 0.065 # radius [m]

hv2 = 0.01 # thickness [m]

mv2 = ((rho.acx*(rv2*%2))*np.pi)*xhv2  # mass [kg]
:jv2 = (mv2x(rv2%%2)) /2 # inertia [kg*
m2]

J2 = jv2+jm2 # total inertia [km

In [3]: # Spring
.. d =
c

0.0027836 # damp
= 0.4797954 # spring factor
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In [4]: A
Out [4]:
matrix ([[0, 0, 1, O],
[07 07 07 1]7
[c/J1, —¢/J1, (—d — d1)/J1, —d/J1],
[—c/J2, —c/J2, —d/J2, (—d — d2)/J2]])
In [5]: Bl
Out [5]:
matrix ([[0, O],
[0, 0],
[kt1/J1, O],

[0, kt2/J2]])
In [6]: B=B1[:,0]

In [7]: C
Out[7]: |

In [8]: C2
Out [8]: [0, 1, 0, 0]

In [9]: D

Out[9]: [[0], [0]]
In [10]: D2
Out[10]: [0]

The control system toolbox and the additional “pysimCoder.py” package contain all the func-
tions required for the design of the controller. In this case we design a discrete-state feedback
controller with integral part for eliminating steady-state errors. The states are estimated with
a reduced-order observer. In addition, an anti-windup mechanism has been implemented. The
sampling time is set to 10 ms.

The pysimCoder module offers 3 functions that facilitate the controller design:

e The function red_obs(sys, T, poles) which implements the reduced-order observer for the
system sys, using the submatrix T (required to obtain the estimator C-matrix and the
desired state-estimator poles poles.

P=[C;T) = C*=C-P " =I,,04_y]

e The function comp_form i(sys,obs,K,Cy) that transforms the observer obs with the
state-feedback gains K and the integrator part into a single dynamic block with the
reference signal and the two positions ¢, and s as inputs and the control current I; as
output. The vector Cy is used to select ¢, as the output signal that is compared with the
reference signal for generating the steady-state error for the integral part of the controller.

e The function set_aw(sys,poles) that transforms the previous controller (Contr(s) =
N(s)/D(s)) in an input state-space system and a feedback state-space system, imple-
menting the anti-windup mechanism. The vector poles contains the desired poles of the
two new systems (D, (S)) (see figure 8.2).
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sys_in(s) = DZEUS()S)
sys_fbk(s) =1— DD<S()8)

G(z)
sys_in
sum
‘I,I G(z)
sys_fbk

Figure 8.2: Anti windup

8.2 The plant model

# Sampling time
ts = 10e—3

gssl = ss(A,B,C,D)
gss = ss(A,B,C2,D2)
gz = c2d(gss,ts, 'zoh’)
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8.3 Controller design

# Control design

wn = 10

xil = np.sqrt(2)/2

xi2 = 0.85

clopl = [1,2%xil*wn,wn#**2]
cl_p2 = [1,2xxi2%wn,wn*x2]
cl_p3 = [1,wn]

cl_polyl = sp.polymul(cl_-pl,cl_p2)
cl_poly = sp.polymul(cl_polyl, cl_p3)
cl_poles = sp.roots(cl_poly) # Desired continuous

cl_polesd = sp.exp(cl_polesx*ts) # Desired discrete poles

# Add discrete integrator for steady state zero error
Phi_f = np.vstack ((gz.A,—gz.Cxts))

Phi_f = np. hstack ((Phi_f,[[0],[0],[0],[0],[1]]))

G_f = np.vstack ((gz.B,zeros ((1,1))))

# Pole placement
k = placep (Phi_f ,G_f,cl_polesd)

8.4 Observer design

# Observer design — reduced order observer
poli_o = 5xcl_poles [0:2]
poli_oz = sp.exp(poli_ox*ts)

disks = ss(A,B,C,D)
disksz = StateSpace(gz.A,gz.B,C,D, ts)
T = [[0,0,1,0],(0,0,0,1]]

# Reduced order observer
r_.obs = red.obs(disksz ,T, poli_oz)

# Controller and observer in the same matriz — Compact

form
contr_.I = comp-_form_i(disksz ,r_obs ,k,[0,1])

# Implement anti windup
[gss_in , gss_out]| = set_aw(contr.I,[0.1,0.1,0.1])

8.5 Simulation

We can perform the simulation of the discrete-time controller with the continuous-time math-
ematic plant model using the block diagram of figure 8.3
This diagram is stored as “disks_sim.dgm” in the folder.
The plant is represented by a continuous-time state-space block with 1 input and 2 outputs.
The controller implements the state-feedback gains and the state observer and it has been split
into a CTRIN block and a CTRFBK block in order to implement the anti-windup mechanism.
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Il
ulseGenerator Glz)

LTI_discrete

]
G(s) e

LTI_continous RT Plot

B

Figure 8.3: Block diagram for the simulation

Now we can launch the simulation with the command “Simulate” from the toolbar or from the
mentu.
A double click on the ‘block “Plot” show the result of the simulation (see figure 8.4)

Figure 8.4: Simulation of the plant

8.6 Real-time controller

In order to generate the RT controller for the real plant, we first have to substitute the plant
with the interfaces for sensors and actuators using blocks that send and receive CAN message
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using a USB dongle of Peak System. The template makefile for this system is now rt.tmf, that
allows to generate code with real-time behaviour.
The block diagram for the real-time controller is represented in figure 8.5.

m n
N

=3

current

MAXON_MOT_I

RT Plot

Figure 8.5: Block diagram for the RT implementation

The motor position can be plotted in python at the end of the execution (see figure 8.6).

Figure 8.6: RT execution
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