Joint callback functions

Child scripts, or customization scripts can include a joint callback function, which is one of many system callback functions. When present for a given joint, then it will be called by CoppeliaSim in various situations:

  • When the joint is in kinematic mode: a call to sim.setJointTargetPosition or sim.setJointTargetVelocity will trigger the joint callback function. If not present in a script attached to the given joint, then the call will be redirected to the main script that offers a default behaviour, i.e. a specific motion profile will be applied
  • When the joint is in dynamic mode, is dynamically enabled, and is set to custom control: the physics engine will trigger the joint callback function for each dynamics simulation step, which is quite often, normally 10 times per simulation step for a given joint
  • Joint callback functions enable the user to customize the control loop for specific joints in order to write low-level control algorithms.

    Following represents a simple PID joint callback function, for a joint in dynamic mode:

    function sysCall_jointCallback(inData) -- inData.mode : sim.jointmode_kinematic or sim.jointmode_dynamic -- -- inData.handle : the handle of the joint associated with this script -- inData.revolute : whether the joint associated with this script is revolute or prismatic -- inData.cyclic : whether the joint associated with this script is cyclic or not -- inData.lowLimit : the lower limit of the joint associated with this script (if the joint is not cyclic) -- inData.highLimit : the higher limit of the joint associated with this script (if the joint is not cyclic) -- inData.currentPos : the current position -- inData.targetPos : the desired position (if joint is dynamic, or when sim.setJointTargetPosition was called) -- inData.targetVel : the desired velocity (if joint is dynamic, or when sim.setJointTargetVelocity was called) -- inData.initVel : the desired initial velocity (if joint is kinematic and when sim.setJointTargetVelocity -- was called with a 4th argument) -- inData.errorValue : targetPos-currentPos (with revolute cyclic joints, the shortest cyclic distance) -- inData.maxVel : a maximum velocity, taken from sim.setJointTargetPosition or -- sim.setJointTargetVelocity's 3rd argument) -- inData.maxAccel : a maximum acceleration, taken from sim.setJointTargetPosition or -- sim.setJointTargetVelocity's 3rd argument) -- inData.maxJerk : a maximum jerk, taken from sim.setJointTargetPosition or -- sim.setJointTargetVelocity's 3rd argument) -- inData.first : whether this is the first call from the physics engine, since the joint -- was initialized (or re-initialized) in it. -- inData.passCnt : the current dynamics calculation pass. 1-10 by default -- inData.totalPasses : the number of dynamics calculation passes for each "regular" simulation pass. -- inData.effort : the last force or torque that acted on this joint along/around its axis. With Bullet, -- torques from joint limits are not taken into account -- inData.dynStepSize : the step size used for the dynamics calculations (by default 5ms) -- inData.force : the joint force/torque, as set via sim.setJointTargetForce -- inData.velUpperLimit : the joint velocity upper limit if inData.first then PID_P=0.1 PID_I=0 PID_D=0 pidCumulativeErrorForIntegralParam=0 end -- The control happens here: -- 1. Proportional part: local ctrl=inData.errorValue*PID_P -- 2. Integral part: if PID_I~=0 then pidCumulativeErrorForIntegralParam=pidCumulativeErrorForIntegralParam+inData.errorValue*inData.dynStepSize else pidCumulativeErrorForIntegralParam=0 end ctrl=ctrl+pidCumulativeErrorForIntegralParam*PID_I -- 3. Derivative part: if not inData.first then ctrl=ctrl+(inData.errorValue-pidLastErrorForDerivativeParam)*PID_D/inData.dynStepSize end pidLastErrorForDerivativeParam=inData.errorValue -- 4. Calculate the velocity needed to reach the position in one dynamic time step: local maxVelocity=ctrl/inData.dynStepSize -- max. velocity allowed. if (maxVelocity>inData.velUpperLimit) then maxVelocity=inData.velUpperLimit end if (maxVelocity<-inData.velUpperLimit) then maxVelocity=-inData.velUpperLimit end local forceOrTorqueToApply=inData.maxForce -- the maximum force/torque that the joint will be able to exert -- 5. Following data must be returned to CoppeliaSim: firstPass=false local outData={} outData.velocity=maxVelocity outData.force=forceOrTorqueToApply return outData -- Expected return data: -- For kinematic joints: -- outData={position=pos, velocity=vel, immobile=false} -- -- For dynamic joints: -- outData={force=f, velocity=vel} end

    In Python, a joint callback function can only be implemented via a non-threaded script, and it should be explicitly activated with a luaExec command:

    #python #luaExec additionalFuncs={'sysCall_jointCallback'} def sysCall_jointCallback(inData): pass