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Welcome to Composing Programs, a free online introduction to programming and
computer science.

In the tradition of SICP, this text focuses on methods for abstraction, programming
paradigms, and techniques for managing the complexity of large programs. These
concepts are illustrated primarily using the Python 3 programming language.

In addition to reading the chapters below, you can apply your knowledge to the
programming projects that accompany the text and visualize program execution using the
Online Python Tutor.

Instructors: If you are interested in adapting any of these materials for your courses, please
fill out this short survey so that we can support your efforts.
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Chapter 1: Building Abstractions with Functions

1.1 Getting Started

Computer science is a tremendously broad academic discipline. The areas of globally
distributed systems, artificial intelligence, robotics, graphics, security, scientific computing,
computer architecture, and dozens of emerging sub-fields all expand with new techniques
and discoveries every year. The rapid progress of computer science has left few aspects of
human life unaffected. Commerce, communication, science, art, leisure, and politics have
all been reinvented as computational domains.

The high productivity of computer science is only possible because the discipline is built
upon an elegant and powerful set of fundamental ideas. All computing begins with
representing information, specifying logic to process it, and designing abstractions that
manage the complexity of that logic. Mastering these fundamentals will require us to
understand precisely how computers interpret computer programs and carry out
computational processes.

These fundamental ideas have long been taught using the classic textbook Structure and
Interpretation of Computer Programs (SICP) by Harold Abelson and Gerald Jay Sussman
with Julie Sussman. This text borrows heavily from that textbook, which the original
authors have kindly licensed for adaptation and reuse under a Creative Commons license.
These notes are published under the Creative Commons attribution non-commericial
share-alike license version 3.

1.1.1 Programming in Python

A language isn't something you learn so much as something you join.

—Arika Okrent

In order to define computational processes, we need a programming language; preferably
one that many humans and a great variety of computers can all understand. In this text, we
will work primarily with the Python language.

Python is a widely used programming language that has recruited enthusiasts from many
professions: web programmers, game engineers, scientists, academics, and even
designers of new programming languages. When you learn Python, you join a million-
person-strong community of developers. Developer communities are tremendously
important institutions: members help each other solve problems, share their projects and
experiences, and collectively develop software and tools. Dedicated members often
achieve celebrity and widespread esteem for their contributions.

The Python language itself is the product of a large volunteer community that prides itself
on the diversity of its contributors. The language was conceived and first implemented by
Guido van Rossum in the late 1980's. The first chapter of his Python 3 Tutorial explains
why Python is so popular, among the many languages available today.
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Python excels as an instructional language because, throughout its history, Python's
developers have emphasized the human interpretability of Python code, reinforced by the
Zen of Python guiding principles of beauty, simplicity, and readability. Python is particularly
appropriate for this text because its broad set of features support a variety of different
programming styles, which we will explore. While there is no single way to program in
Python, there are a set of conventions shared across the developer community that
facilitate reading, understanding, and extending existing programs. Python's combination
of great flexibility and accessibility allows students to explore many programming
paradigms, and then apply their newly acquired knowledge to thousands of ongoing
projects.

These notes maintain the spirit of SICP by introducing the features of Python in step with
techniques for abstraction and a rigorous model of computation. In addition, these notes
provide a practical introduction to Python programming, including some advanced
language features and illustrative examples. Increasing your facility with Python should
come naturally as you progress through the text.

The best way to get started programming in Python is to interact with the interpreter
directly. This section describes how to install Python 3, initiate an interactive session with
the interpreter, and start programming.

1.1.2 Installing Python 3

As with all great software, Python has many versions. This text will use the most recent
stable version of Python 3. Many computers have older versions of Python installed
already, such as Python 2.7, but those will not match the descriptions in this text. You
should be able to use any computer, but expect to install Python 3. (Don't worry, Python is
free.)

You can download Python 3 from the Python downloads page by clicking on the version
that begins with 3 (not 2). Follow the instructions of the installer to complete installation.

For further guidance, try these video tutorials on Windows installation and Mac installation
of Python 3, created by Julia Oh.

1.1.3 Interactive Sessions

In an interactive Python session, you type some Python code after the prompt, >>>. The
Python interpreter reads and executes what you type, carrying out your various
commands.

To start an interactive session, run the Python 3 application. Type python3 at a terminal
prompt (Mac/Unix/Linux) or open the Python 3 application in Windows.

If you see the Python prompt, >>>, then you have successfully started an interactive
session. These notes depict example interactions using the prompt, followed by some
input.

>>> 2 + 2
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Interactive controls. Each session keeps a history of what you have typed. To access that
history, press <control>-p (previous) and <control>-N (next). <control>-D exits a session,
which discards this history. Up and down arrows also cycle through history on some
systems.

1.1.4 First Example

And, as imagination bodies forth

The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing

A local habitation and a name.

—William Shakespeare, A Midsummer-Night's Dream

To give Python a proper introduction, we will begin with an example that uses several
language features. In the next section, we will start from scratch and build up the language
piece by piece. Think of this section as a sneak preview of features to come.

Python has built-in support for a wide range of common programming activities, such as
manipulating text, displaying graphics, and communicating over the Internet. The line of
Python code

>>> from urllib.request import urlopen

is an import statement that loads functionality for accessing data on the Internet. In
particular, it makes available a function called uriopen, which can access the content at a
uniform resource locator (URL), a location of something on the Internet.

Statements & Expressions. Python code consists of expressions and statements. Broadly,
computer programs consist of instructions to either

1. Compute some value
2. Carry out some action

Statements typically describe actions. When the Python interpreter executes a statement,
it carries out the corresponding action. On the other hand, expressions typically describe
computations. When Python evaluates an expression, it computes the value of that
expression. This chapter introduces several types of statements and expressions.

The assignment statement

>>> shakespeare = urlopen('http://composingprograms.com/shakespeare.txt')

associates the name shakespeare with the value of the expression that follows =. That
expression applies the uriopen function to a URL that contains the complete text of William
Shakespeare's 37 plays, all in a single text document.

Functions. Functions encapsulate logic that manipulates data. uriopen is a function. A web
address is a piece of data, and the text of Shakespeare's plays is another. The process by



which the former leads to the latter may be complex, but we can apply that process using
only a simple expression because that complexity is tucked away within a function.
Functions are the primary topic of this chapter.

Another assignment statement

>>> words = set(shakespeare.read().decode().split())

associates the name words to the set of all unique words that appear in Shakespeare's
plays, all 33,721 of them. The chain of commands 10 read, decode, and split, each operate
on an intermediate computational entity: we read the data from the opened URL, then
decode the data into text, and finally sp1it the text into words. All of those words are placed
IN a set.

Objects. A set is a type of object, one that supports set operations like computing
intersections and membership. An object seamlessly bundles together data and the logic
that manipulates that data, in a way that manages the complexity of both. Objects are the
primary topic of Chapter 2. Finally, the expression

>>> {w for w in words if len(w) == 6 and w[::-1] in words}
{'redder', 'drawer', 'reward', 'diaper', 'repaid'}

is a compound expression that evaluates to the set of all Shakespearian words that are
simultaneously a word spelled in reverse. The cryptic notation w( : :-1] enumerates each
letter in a word, but the -1 dictates to step backwards. When you enter an expression in an
interactive session, Python prints its value on the following line.

Interpreters. Evaluating compound expressions requires a precise procedure that interprets
code in a predictable way. A program that implements such a procedure, evaluating
compound expressions, is called an interpreter. The design and implementation of
interpreters is the primary topic of Chapter 3.

When compared with other computer programs, interpreters for programming languages
are unique in their generality. Python was not designed with Shakespeare in mind.
However, its great flexibility allowed us to process a large amount of text with only a few
statements and expressions.

In the end, we will find that all of these core concepts are closely related: functions are
objects, objects are functions, and interpreters are instances of both. However, developing
a clear understanding of each of these concepts and their role in organizing code is critical
to mastering the art of programming.

1.1.5 Errors

Python is waiting for your command. You are encouraged to experiment with the language,
even though you may not yet know its full vocabulary and structure. However, be prepared
for errors. While computers are tremendously fast and flexible, they are also extremely
rigid. The nature of computers is described in Stanford's introductory course as
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The fundamental equation of computers is:
computer = powerful + stupid

Computers are very powerful, looking at volumes of data very quickly.
Computers can perform billions of operations per second, where each
operation is pretty simple.

Computers are also shockingly stupid and fragile. The operations that they can
do are extremely rigid, simple, and mechanical. The computer lacks anything
like real insight ... it's nothing like the HAL 9000 from the movies. If nothing else,
you should not be intimidated by the computer as if it's some sort of brain. It's
very mechanical underneath it all.

Programming is about a person using their real insight to build something
useful, constructed out of these teeny, simple little operations that the
computer can do.

—Francisco Cai and Nick Parlante, Stanford CS101

The rigidity of computers will immediately become apparent as you experiment with the
Python interpreter: even the smallest spelling and formatting changes will cause
unexpected output and errors.

Learning to interpret errors and diagnose the cause of unexpected errors is called
debugging. Some guiding principles of debugging are:

1. Test incrementally: Every well-written program is composed of small, modular
components that can be tested individually. Try out everything you write as soon as
possible to identify problems early and gain confidence in your components.

2. lIsolate errors: An error in the output of a statement can typically be attributed to a
particular modular component. When trying to diagnose a problem, trace the error to
the smallest fragment of code you can before trying to correct it.

3. Check your assumptions: Interpreters do carry out your instructions to the letter —
no more and no less. Their output is unexpected when the behavior of some code
does not match what the programmer believes (or assumes) that behavior to be.
Know your assumptions, then focus your debugging effort on verifying that your
assumptions actually hold.

4. Consult others: You are not alone! If you don't understand an error message, ask a
friend, instructor, or search engine. If you have isolated an error, but can't figure out
how to correct it, ask someone else to take a look. A lot of valuable programming
knowledge is shared in the process of group problem solving.

Incremental testing, modular design, precise assumptions, and teamwork are themes that
persist throughout this text. Hopefully, they will also persist throughout your computer
science career.

Continue: 1.2 Elements of Programming

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold
Abelson and Gerald Jay Sussman, is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.


http://localhost:8080/pages/12-elements-of-programming.html
http://www.denero.org
http://mitpress.mit.edu/sicp/
http://creativecommons.org/licenses/by-sa/3.0/

1.2 Elements of Programming

A programming language is more than just a means for instructing a computer to perform
tasks. The language also serves as a framework within which we organize our ideas about
computational processes. Programs serve to communicate those ideas among the
members of a programming community. Thus, programs must be written for people to
read, and only incidentally for machines to execute.

When we describe a language, we should pay particular attention to the means that the
language provides for combining simple ideas to form more complex ideas. Every powerful
language has three such mechanisms:

e primitive expressions and statements, which represent the simplest building blocks
that the language provides,

e means of combination, by which compound elements are built from simpler ones,
and

e means of abstraction, by which compound elements can be named and manipulated
as units.

In programming, we deal with two kinds of elements: functions and data. (Soon we will
discover that they are really not so distinct.) Informally, data is stuff that we want to
manipulate, and functions describe the rules for manipulating the data. Thus, any powerful
programming language should be able to describe primitive data and primitive functions,
as well as have some methods for combining and abstracting both functions and data.

1.2.1 Expressions

Video: Show Hide

Having experimented with the full Python interpreter in the previous section, we now start
anew, methodically developing the Python language element by element. Be patient if the
examples seem simplistic — more exciting material is soon to come.

We begin with primitive expressions. One kind of primitive expression is a number. More
precisely, the expression that you type consists of the numerals that represent the number
in base 10.

>>> 42
42

Expressions representing numbers may be combined with mathematical operators to form
a compound expression, which the interpreter will evaluate:

>>> -1 - -1

0

>>> 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
0.9921875

These mathematical expressions use infix notation, where the operator (e.g., +, -, *, or /)



appears in between the operands (numbers). Python includes many ways to form
compound expressions. Rather than attempt to enumerate them all immediately, we will
introduce new expression forms as we go, along with the language features that they
support.

1.2.2 Call Expressions

Video: Show Hide

The most important kind of compound expression is a call expression, which applies a
function to some arguments. Recall from algebra that the mathematical notion of a function
is a mapping from some input arguments to an output value. For instance, the max function
maps its inputs to a single output, which is the largest of the inputs. The way in which
Python expresses function application is the same as in conventional mathematics.

>>> max(7.5, 9.5)
9.5

This call expression has subexpressions: the operator is an expression that precedes
parentheses, which enclose a comma-delimited list of operand expressions.

max ( 7.5 A 9.5 )
Operator Operand Operand

The operator specifies a function. When this call expression is evaluated, we say that the
function max is called with arguments 7.5 and 9.5, and returns a value of 9.5.

The order of the arguments in a call expression matters. For instance, the function pow
raises its first argument to the power of its second argument.

>>> pow (100, 2)

10000

>>> pow(2, 100)
1267650600228229401496703205376

Function notation has three principal advantages over the mathematical convention of infix
notation. First, functions may take an arbitrary number of arguments:

>>> max(1l, -2, 3, -4)
3

No ambiguity can arise, because the function name always precedes its arguments.

Second, function notation extends in a straightforward way to nested expressions, where
the elements are themselves compound expressions. In nested call expressions, unlike
compound infix expressions, the structure of the nesting is entirely explicit in the
parentheses.

>>> max(min(l, -2), min(pow(3, 5), -4))
-2



There is no limit (in principle) to the depth of such nesting and to the overall complexity of
the expressions that the Python interpreter can evaluate. However, humans quickly get
confused by multi-level nesting. An important role for you as a programmer is to structure
expressions so that they remain interpretable by yourself, your programming partners, and
other people who may read your expressions in the future.

Third, mathematical notation has a great variety of forms: multiplication appears between
terms, exponents appear as superscripts, division as a horizontal bar, and a square root as
a roof with slanted siding. Some of this notation is very hard to type! However, all of this
complexity can be unified via the notation of call expressions. While Python supports
common mathematical operators using infix notation (like + and -), any operator can be
expressed as a function with a name.

1.2.3 Importing Library Functions

Python defines a very large number of functions, including the operator functions
mentioned in the preceding section, but does not make all of their names available by
default. Instead, it organizes the functions and other quantities that it knows about into
modules, which together comprise the Python Library. To use these elements, one imports
them. For example, the math module provides a variety of familiar mathematical functions:

>>> from math import sqgrt
>>> sqrt(256)
16.0

and the operator module provides access to functions corresponding to infix operators:

>>> from operator import add, sub, mul
>>> add (14, 28)

42

>>> sub (100, mul(7, add(8, 4)))

16

An import statement designates a module name (e.g., operator Or math), and then lists the
named attributes of that module to import (e.g., sqrt). Once a function is imported, it can
be called multiple times.

There is no difference between using these operator functions (e.g., add) and the operator
symbols themselves (e.g., +). Conventionally, most programmers use symbols and infix
notation to express simple arithmetic.

The Python 3 Library Docs list the functions defined by each module, such as the math
module. However, this documentation is written for developers who know the whole
language well. For now, you may find that experimenting with a function tells you more
about its behavior than reading the documentation. As you become familiar with the
Python language and vocabulary, this documentation will become a valuable reference
source.

1.2.4 Names and the Environment
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A critical aspect of a programming language is the means it provides for using names to
refer to computational objects. If a value has been given a name, we say that the name
binds to the value.

In Python, we can establish new bindings using the assignment statement, which contains
a name to the left of = and a value to the right:

>>> radius = 10
>>> radius

10

>>> 2 * radius
20

Names are also bound via import statements.

>>> from math import pi
>>> pi * 71 / 223
1.0002380197528042

The = symbol is called the assignment operator in Python (and many other languages).
Assignment is our simplest means of abstraction, for it allows us to use simple names to
refer to the results of compound operations, such as the area computed above. In this
way, complex programs are constructed by building, step by step, computational objects
of increasing complexity.

The possibility of binding names to values and later retrieving those values by name means
that the interpreter must maintain some sort of memory that keeps track of the names,
values, and bindings. This memory is called an environment.

Names can also be bound to functions. For instance, the name max is bound to the max
function we have been using. Functions, unlike numbers, are tricky to render as text, so
Python prints an identifying description instead, when asked to describe a function:

>>> max
<built-in function max>

We can use assignment statements to give new names to existing functions.

>>> f = max

>>> f

<built-in function max>
>>> f(2, 3, 4)

4

And successive assignment statements can rebind a name to a new value.

>>> f = 2
>>> f
2



In Python, names are often called variable names or variables because they can be bound
to different values in the course of executing a program. When a name is bound to a new
value through assignment, it is no longer bound to any previous value. One can even bind
built-in names to new values.

>>> max = 5
>>> max
5

After assigning max to 5, the name max is no longer bound to a function, and so attempting
to call max(2, 3, 4) will cause an error.

When executing an assignment statement, Python evaluates the expression to the right of
= before changing the binding to the name on the left. Therefore, one can refer to a name in
right-side expression, even if it is the name to be bound by the assignment statement.

1
N

>>> x
>>> x
>>> x
3

x + 1

We can also assign multiple values to multiple names in a single statement, where names
on the left of = and expressions on the right of = are separated by commas.

>>> area, circumference = pi * radius * radius, 2 * pi * radius
>>> area

314.1592653589793

>>> circumference

62.83185307179586

Changing the value of one name does not affect other names. Below, even though the
name area Was bound to a value defined originally in terms of radius, the value of area has
not changed. Updating the value of area requires another assignment statement.

>>> radius = 11

>>> area

314.1592653589793

>>> area = pi * radius * radius
380.132711084365

With multiple assignment, all expressions to the right of = are evaluated before any names
to the left are bound to those values. As a result of this rule, swapping the values bound to
two names can be performed in a single statement.

>>>x, y =3, 4.5
>>> vy, X = X, Y
>>> x

4.5

>>> y

3



1.2.5 Evaluating Nested Expressions

One of our goals in this chapter is to isolate issues about thinking procedurally. As a case
in point, let us consider that, in evaluating nested call expressions, the interpreter is itself
following a procedure.

To evaluate a call expression, Python will do the following:

1. Evaluate the operator and operand subexpressions, then
2. Apply the function that is the value of the operator subexpression to the arguments
that are the values of the operand subexpressions.

Even this simple procedure illustrates some important points about processes in general.
The first step dictates that in order to accomplish the evaluation process for a call
expression we must first evaluate other expressions. Thus, the evaluation procedure is
recursive in nature; that is, it includes, as one of its steps, the need to invoke the rule itself.

For example, evaluating

>>> sub(pow(2, add(l, 10)), pow(2, 5))
2016

requires that this evaluation procedure be applied four times. If we draw each expression
that we evaluate, we can visualize the hierarchical structure of this process.
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This illustration is called an expression tree. In computer science, trees conventionally grow
from the top down. The objects at each point in a tree are called nodes; in this case, they
are expressions paired with their values.

Evaluating its root, the full expression at the top, requires first evaluating the branches that
are its subexpressions. The leaf expressions (that is, nodes with no branches stemming
from them) represent either functions or numbers. The interior nodes have two parts: the



call expression to which our evaluation rule is applied, and the result of that expression.
Viewing evaluation in terms of this tree, we can imagine that the values of the operands
percolate upward, starting from the terminal nodes and then combining at higher and
higher levels.

Next, observe that the repeated application of the first step brings us to the point where we
need to evaluate, not call expressions, but primitive expressions such as numerals (e.g., 2)
and names (e.g., add). We take care of the primitive cases by stipulating that

e A numeral evaluates to the number it names,
e A name evaluates to the value associated with that name in the current environment.

Notice the important role of an environment in determining the meaning of the symbols in
expressions. In Python, it is meaningless to speak of the value of an expression such as

>>> add(x, 1)

without specifying any information about the environment that would provide a meaning for
the name x (or even for the name add). Environments provide the context in which
evaluation takes place, which plays an important role in our understanding of program
execution.

This evaluation procedure does not suffice to evaluate all Python code, only call
expressions, numerals, and names. For instance, it does not handle assignment
statements. Executing

>>> x = 3

does not return a value nor evaluate a function on some arguments, since the purpose of
assignment is instead to bind a name to a value. In general, statements are not evaluated
but executed; they do not produce a value but instead make some change. Each type of
expression or statement has its own evaluation or execution procedure.

A pedantic note: when we say that "a numeral evaluates to a number," we actually mean
that the Python interpreter evaluates a numeral to a number. It is the interpreter which
endows meaning to the programming language. Given that the interpreter is a fixed
program that always behaves consistently, we can say that numerals (and expressions)
themselves evaluate to values in the context of Python programs.

1.2.6 The Non-Pure Print Function
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Throughout this text, we will distinguish between two types of functions.

Pure functions. Functions have some input (their arguments) and return some output (the
result of applying them). The built-in function

>>> abs(-2)
2



can be depicted as a small machine that takes input and produces output.

-2 p abs(number): |_
] P2

The function abs is pure. Pure functions have the property that applying them has no
effects beyond returning a value. Moreover, a pure function must always return the same
value when called twice with the same arguments.

Non-pure functions. In addition to returning a value, applying a non-pure function can
generate side effects, which make some change to the state of the interpreter or computer.
A common side effect is to generate additional output beyond the return value, using the
print function.

>>> print(1l, 2, 3)
123

While print and abs may appear to be similar in these examples, they work in
fundamentally different ways. The value that print returns is always none, a special Python
value that represents nothing. The interactive Python interpreter does not automatically
print the value none. In the case of print, the function itself is printing output as a side
effect of being called.

-2 P print(...): |_

—

display .i‘.l‘_z.l‘l

P None

A nested expression of calls to print highlights the non-pure character of the function.

>>> print(print(1l), print(2))
1

2

None None

If you find this output to be unexpected, draw an expression tree to clarify why evaluating
this expression produces this peculiar output.

Be careful with print! The fact that it returns none means that it should not be the
expression in an assignment statement.

>>> two = print(2)
2

>>> print(two)
None

Pure functions are restricted in that they cannot have side effects or change behavior over



time. Imposing these restrictions yields substantial benefits. First, pure functions can be
composed more reliably into compound call expressions. We can see in the non-pure
function example above that print does not return a useful result when used in an operand
expression. On the other hand, we have seen that functions such as max, pow and sqrt can
be used effectively in nested expressions.

Second, pure functions tend to be simpler to test. A list of arguments will always lead to
the same return value, which can be compared to the expected return value. Testing is
discussed in more detail later in this chapter.

Third, Chapter 4 will illustrate that pure functions are essential for writing concurrent
programs, in which multiple call expressions may be evaluated simultaneously.

By contrast, Chapter 2 investigates a range of non-pure functions and describes their uses.

For these reasons, we concentrate heavily on creating and using pure functions in the
remainder of this chapter. The print function is only used so that we can see the
intermediate results of computations.

Continue: 1.3 Defining New Functions
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1.3 Defining New Functions

Video: Show Hide

We have identified in Python some of the elements that must appear in any powerful
programming language:

1. Numbers and arithmetic operations are primitive built-in data values and functions.
2. Nested function application provides a means of combining operations.
3. Binding names to values provides a limited means of abstraction.

Now we will learn about function definitions, a much more powerful abstraction technique
by which a name can be bound to compound operation, which can then be referred to as a
unit.

We begin by examining how to express the idea of squaring. We might say, "To square
something, multiply it by itself." This is expressed in Python as

>>> def square(x):
return mul (x, X)

which defines a new function that has been given the name square. This user-defined
function is not built into the interpreter. It represents the compound operation of
multiplying something by itself. The x in this definition is called a formal parameter, which
provides a hame for the thing to be multiplied. The definition creates this user-defined
function and associates it with the name square.

How to define a function. Function definitions consist of a def statement that indicates a
<name> and a comma-separated list of named <formal parameters>, then a return
statement, called the function body, that specifies the <return expression> of the function,
which is an expression to be evaluated whenever the function is applied:

def <name>(<formal parameters>):
return <return expression>

The second line must be indented — most programmers use four spaces to indent. The
return expression is not evaluated right away; it is stored as part of the newly defined
function and evaluated only when the function is eventually applied.

Having defined square, we can apply it with a call expression:

>>> square(21)

441

>>> square(add(2, 5))
49

>>> square(square(3))
81

We can also use square as a building block in defining other functions. For example, we
can easily define a function sum_squares that, given any two numbers as arguments,
returns the sum of their squares:



>>> def sum squares(x, y):
return add(square(x), square(y))

>>> sum_squares (3, 4)
25

User-defined functions are used in exactly the same way as built-in functions. Indeed, one
cannot tell from the definition of sum_squares whether square is built into the interpreter,
imported from a module, or defined by the user.

Both def statements and assignment statements bind names to values, and any existing
bindings are lost. For example, g below first refers to a function of no arguments, then a
number, and then a different function of two arguments.

>>> def g():
return 1

>>> g()

1

>>>

>>>

g =2
g

>>> def g(h, i):
return h + i
>>> g(1, 2)

1.3.1 Environments
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Our subset of Python is now complex enough that the meaning of programs is non-
obvious. What if a formal parameter has the same name as a built-in function? Can two
functions share names without confusion? To resolve such questions, we must describe
environments in more detail.

An environment in which an expression is evaluated consists of a sequence of frames,
depicted as boxes. Each frame contains bindings, each of which associates a name with
its corresponding value. There is a single global frame. Assignment and import statements
add entries to the first frame of the current environment. So far, our environment consists
only of the global frame.

from math import pi tau = 2 * pi

This environment diagram shows the bindings of the current environment, along with the
values to which names are bound. The environment diagrams in this text are interactive:
you can step through the lines of the small program on the left to see the state of the
environment evolve on the right. You can also click on the "Edit code in Online Python
Tutor" link to load the example into the Online Python Tutor, a tool created by Philip Guo
for generating these environment diagrams. You are encouraged to create examples
yourself and study the resulting environment diagrams.


http://composingprograms.com/tutor.html
http://www.pgbovine.net/

Functions appear in environment diagrams as well. An import statement binds a name to a
built-in function. A def statement binds a name to a user-defined function created by the
definition. The resulting environment after importing mul and defining square appears
below:

from operator import mul def square(x): return mul(x, x)

Each function is a line that starts with func, followed by the function name and formal
parameters. Built-in functions such as mul do not have formal parameter names, and so
... is always used instead.

The name of a function is repeated twice, once in the frame and again as part of the
function itself. The name appearing in the function is called the intrinsic name. The name in
a frame is a bound name. There is a difference between the two: different names may refer
to the same function, but that function itself has only one intrinsic name.

The name bound to a function in a frame is the one used during evaluation. The intrinsic
name of a function does not play a role in evaluation. Step through the example below
using the Forward button to see that once the name max is bound to the value 3, it can no
longer be used as a function.

f = max max = 3 result = f(2, 3, 4) max(1, 2) # Causes an error

The error message TypeError: 'int' object is not callable iS reporting that the name
max (currently bound to the number 3) is an integer and not a function. Therefore, it cannot
be used as the operator in a call expression.

Function Signatures. Functions differ in the number of arguments that they are allowed to
take. To track these requirements, we draw each function in a way that shows the function
name and its formal parameters. The user-defined function square takes only x; providing
more or fewer arguments will result in an error. A description of the formal parameters of a
function is called the function's signature.

The function max can take an arbitrary number of arguments. It is rendered as max(...).
Regardless of the number of arguments taken, all built-in functions will be rendered as
<name>( . ..), because these primitive functions were never explicitly defined.

1.3.2 Calling User-Defined Functions

To evaluate a call expression whose operator names a user-defined function, the Python
interpreter follows a computational process. As with any call expression, the interpreter
evaluates the operator and operand expressions, and then applies the named function to
the resulting arguments.

Applying a user-defined function introduces a second local frame, which is only accessible
to that function. To apply a user-defined function to some arguments:

1. Bind the arguments to the names of the function's formal parameters in a new local
frame.
2. Execute the body of the function in the environment that starts with this frame.

The environment in which the body is evaluated consists of two frames: first the local



frame that contains formal parameter bindings, then the global frame that contains
everything else. Each instance of a function application has its own independent local
frame.

To illustrate an example in detail, several steps of the environment diagram for the same
example are depicted below. After executing the first import statement, only the name mu1
is bound in the global frame.

from operator import mul def square(x): return mul(x, x) square(-2)

First, the definition statement for the function square is executed. Notice that the entire def
statement is processed in a single step. The body of a function is not executed until the
function is called (not when it is defined).

from operator import mul def square(x): return mul(x, x) square(-2)

Next, The square function is called with the argument -2, and so a new frame is created
with the formal parameter x bound to the value -2.

from operator import mul def square(x): return mul(x, x) square(-2)

Then, the name x is looked up in the current environment, which consists of the two frames
shown. In both occurrences, x evaluates to -2, and so the square function returns 4.

from operator import mul def square(x): return mul(x, x) square(-2)

The "Return value" in the square() frame is not a name binding; instead it indicates the
value returned by the function call that created the frame.

Even in this simple example, two different environments are used. The top-level expression
square(-2) is evaluated in the global environment, while the return expression mul (x, x) is
evaluated in the environment created for by calling square. Both x and mul are bound in this
environment, but in different frames.

The order of frames in an environment affects the value returned by looking up a name in
an expression. We stated previously that a name is evaluated to the value associated with
that name in the current environment. We can now be more precise:

Name Evaluation. A name evaluates to the value bound to that name in the earliest frame
of the current environment in which that name is found.

Our conceptual framework of environments, names, and functions constitutes a model of
evaluation; while some mechanical details are still unspecified (e.g., how a binding is
implemented), our model does precisely and correctly describe how the interpreter
evaluates call expressions. In Chapter 3 we will see how this model can serve as a
blueprint for implementing a working interpreter for a programming language.

1.3.3 Example: Calling a User-Defined Function

Let us again consider our two simple function definitions and illustrate the process that
evaluates a call expression for a user-defined function.

from operator import add, mul def square(x): return mul(x, x) def sum_squares(x, y): return



add(square(x), square(y)) result = sum_squares(5, 12)

Python first evaluates the name sum_squares, which is bound to a user-defined function in
the global frame. The primitive numeric expressions 5 and 12 evaluate to the numbers they
represent.

Next, Python applies sum_squares, which introduces a local frame that binds x to 5 and y to
12.

from operator import add, mul def square(x): return mul(x, x) def sum_squares(x, y): return
add(square(x), square(y)) result = sum_squares(5, 12)

The body of sum_squares contains this call expression:

add ( square(x) , square(y) )

operator operand 0 operand 1

All three subexpressions are evaluated in the current environment, which begins with the
frame labeled sum squares (). The operator subexpression add is a name found in the global
frame, bound to the built-in function for addition. The two operand subexpressions must
be evaluated in turn, before addition is applied. Both operands are evaluated in the current
environment beginning with the frame labeled sum_squares.

In operand 0, square Names a user-defined function in the global frame, while x names the
number 5 in the local frame. Python applies square t0 5 by introducing yet another local
frame that binds x to 5.

from operator import add, mul def square(x): return mul(x, x) def sum_squares(x, y): return
add(square(x), square(y)) result = sum_squares(5, 12)

Using this environment, the expression mul (x, x) evaluates to 25.

Our evaluation procedure now turns to operand 1, for which y names the number 12.
Python evaluates the body of square again, this time introducing yet another local frame
that binds x to 12. Hence, operand 1 evaluates to 144.

from operator import add, mul def square(x): return mul(x, x) def sum_squares(x, y): return
add(square(x), square(y)) result = sum_squares(5, 12)

Finally, applying addition to the arguments 25 and 144 yields a final return value for

sum_squares: 169.

from operator import add, mul def square(x): return mul(x, x) def sum_squares(x, y): return
add(square(x), square(y)) result = sum_squares(5, 12)

This example illustrates many of the fundamental ideas we have developed so far. Names
are bound to values, which are distributed across many independent local frames, along
with a single global frame that contains shared names. A new local frame is introduced
every time a function is called, even if the same function is called twice.

All of this machinery exists to ensure that names resolve to the correct values at the
correct times during program execution. This example illustrates why our model requires
the complexity that we have introduced. All three local frames contain a binding for the
name x, but that name is bound to different values in different frames. Local frames keep



these names separate.
1.3.4 Local Names

One detail of a function's implementation that should not affect the function's behavior is
the implementer's choice of names for the function's formal parameters. Thus, the
following functions should provide the same behavior:

>>> def square(x):
return mul (x, X)

>>> def square(y):
return mul(y, y)

This principle -- that the meaning of a function should be independent of the parameter
names chosen by its author -- has important consequences for programming languages.
The simplest consequence is that the parameter names of a function must remain local to
the body of the function.

If the parameters were not local to the bodies of their respective functions, then the
parameter x in square could be confused with the parameter x in sum_squares. Critically,
this is not the case: the binding for x in different local frames are unrelated. The model of
computation is carefully designed to ensure this independence.

We say that the scope of a local name is limited to the body of the user-defined function
that defines it. When a name is no longer accessible, it is out of scope. This scoping
behavior isn't a new fact about our model; it is a consequence of the way environments
work.

1.3.5 Choosing Names

The interchangeability of names does not imply that formal parameter names do not matter
at all. On the contrary, well-chosen function and parameter names are essential for the
human interpretability of function definitions!

The following guidelines are adapted from the style guide for Python code, which serves as
a guide for all (non-rebellious) Python programmers. A shared set of conventions smooths
communication among members of a developer community. As a side effect of following
these conventions, you will find that your code becomes more internally consistent.

1. Function names are lowercase, with words separated by underscores. Descriptive
names are encouraged.

2. Function names typically evoke operations applied to arguments by the interpreter
(e.g., print, add, square) or the name of the quantity that results (e.g., max, abs, sum).

3. Parameter names are lowercase, with words separated by underscores. Single-word
names are preferred.

4. Parameter names should evoke the role of the parameter in the function, not just the
kind of argument that is allowed.

5. Single letter parameter names are acceptable when their role is obvious, but avoid
“I" (lowercase ell), "O" (capital oh), or "I" (capital i) to avoid confusion with numerals.


http://www.python.org/dev/peps/pep-0008

There are many exceptions to these guidelines, even in the Python standard library. Like
the vocabulary of the English language, Python has inherited words from a variety of
contributors, and the result is not always consistent.

1.3.6 Functions as Abstractions

Though it is very simple, sum_squares exemplifies the most powerful property of user-
defined functions. The function sum_squares is defined in terms of the function square, but
relies only on the relationship that square defines between its input arguments and its
output values.

We can write sum_squares without concerning ourselves with how to square a number. The
details of how the square is computed can be suppressed, to be considered at a later time.
Indeed, as far as sum_squares is concerned, square is not a particular function body, but
rather an abstraction of a function, a so-called functional abstraction. At this level of
abstraction, any function that computes the square is equally good.

Thus, considering only the values they return, the following two functions for squaring a
number should be indistinguishable. Each takes a numerical argument and produces the
square of that number as the value.

>>> def square(x):
return mul(x, X)
>>> def square(x):
return mul(x, x-1) + x

In other words, a function definition should be able to suppress details. The users of the
function may not have written the function themselves, but may have obtained it from
another programmer as a "black box". A programmer should not need to know how the
function is implemented in order to use it. The Python Library has this property. Many
developers use the functions defined there, but few ever inspect their implementation.

Aspects of a functional abstraction. To master the use of a functional abstraction, it is often
useful to consider its three core attributes. The domain of a function is the set of
arguments it can take. The range of a function is the set of values it can return. The intent
of a function is the relationship it computes between inputs and output (as well as any side
effects it might generate). Understanding functional abstractions via their domain, range,
and intent is critical to using them correctly in a complex program.

For example, any square function that we use to implement sum_squares should have these
attributes:

e The domain is any single real number.
e The range is any non-negative real number.
e The intent is that the output is the square of the input.

These attributes do not specify how the intent is carried out; that detail is abstracted away.

1.3.7 Operators
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Mathematical operators (such as + and -) provided our first example of a method of
combination, but we have yet to define an evaluation procedure for expressions that
contain these operators.

Python expressions with infix operators each have their own evaluation procedures, but
you can often think of them as short-hand for call expressions. When you see

>>> 2 + 3
5

simply consider it to be short-hand for

>>> add(2, 3)
5

Infix notation can be nested, just like call expressions. Python applies the normal
mathematical rules of operator precedence, which dictate how to interpret a compound
expression with multiple operators.

>>> 2 + 3 * 4 + 5
19

evaluates to the same result as

>>> add(add(2, mul(3, 4)), 5)
19

The nesting in the call expression is more explicit than the operator version, but also harder
to read. Python also allows subexpression grouping with parentheses, to override the
normal precedence rules or make the nested structure of an expression more explicit.

>>> (2 + 3) * (4 + 5)
45

evaluates to the same result as

>>> mul(add(2, 3), add(4, 5))
45

When it comes to division, Python provides two infix operators: / and //. The former is
normal division, so that it results in a floating point, or decimal value, even if the divisor
evenly divides the dividend:

>>> 5 / 4
1.25

>>> 8 / 4
2.0

The // operator, on the other hand, rounds the result down to an integer:



>>> 5 // 4
1
>>> -5 // 4
-2

These two operators are shorthand for the truediv and floordiv functions.

>>> from operator import truediv, floordiv
>>> truediv(5, 4)

1.25

>>> floordiv(5, 4)

1

You should feel free to use infix operators and parentheses in your programs. Idiomatic
Python prefers operators over call expressions for simple mathematical operations.

Continue: 1.4 Designing Functions
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1.4 Designing Functions
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Functions are an essential ingredient of all programs, large and small, and serve as our
primary medium to express computational processes in a programming language. So far,
we have discussed the formal properties of functions and how they are applied. We now
turn to the topic of what makes a good function. Fundamentally, the qualities of good
functions all reinforce the idea that functions are abstractions.

e Each function should have exactly one job. That job should be identifiable with a
short name and characterizable in a single line of text. Functions that perform
multiple jobs in sequence should be divided into multiple functions.

e Don't repeat yourself is a central tenet of software engineering. The so-called DRY
principle states that multiple fragments of code should not describe redundant logic.
Instead, that logic should be implemented once, given a name, and applied multiple
times. If you find yourself copying and pasting a block of code, you have probably
found an opportunity for functional abstraction.

¢ Functions should be defined generally. Squaring is not in the Python Library precisely
because it is a special case of the pow function, which raises numbers to arbitrary

powers.

These guidelines improve the readability of code, reduce the number of errors, and often
minimize the total amount of code written. Decomposing a complex task into concise
functions is a skill that takes experience to master. Fortunately, Python provides several
features to support your efforts.

1.4.1 Documentation

A function definition will often include documentation describing the function, called a
docstring, which must be indented along with the function body. Docstrings are
conventionally triple quoted. The first line describes the job of the function in one line. The
following lines can describe arguments and clarify the behavior of the function:

>>> def pressure(v, t, n):
"""Compute the pressure in pascals of an ideal gas.

Applies the ideal gas law: http://en.wikipedia.org/wiki/Ideal gas law

v -- volume of gas, in cubic meters
t -- absolute temperature in degrees kelvin

n -- particles of gas

k = 1.38e-23 # Boltzmann's constant
return n * k * t / v

When you call he1p with the name of a function as an argument, you see its docstring (type
q to quit Python help).

>>> help(pressure)



When writing Python programs, include docstrings for all but the simplest functions.
Remember, code is written only once, but often read many times. The Python docs include
docstring guidelines that maintain consistency across different Python projects.

Comments. Comments in Python can be attached to the end of a line following the #
symbol. For example, the comment Boltzmann's constant above describes k. These
comments don't ever appear in Python's help, and they are ignored by the interpreter.
They exist for humans alone.

1.4.2 Default Argument Values

A consequence of defining general functions is the introduction of additional arguments.
Functions with many arguments can be awkward to call and difficult to read.

In Python, we can provide default values for the arguments of a function. When calling that
function, arguments with default values are optional. If they are not provided, then the
default value is bound to the formal parameter name instead. For instance, if an application
commonly computes pressure for one mole of particles, this value can be provided as a
default:

>>> def pressure(v, t, n=6.022e23):
"""Compute the pressure in pascals of an ideal gas.

v -- volume of gas, in cubic meters
t -- absolute temperature in degrees kelvin

n -- particles of gas (default: one mole)

k = 1.38e-23 # Boltzmann's constant
return n * k * t / v

The = symbol means two different things in this example, depending on the context in
which it is used. In the def statement header, = does not perform assignment, but instead
indicates a default value to use when the pressure function is called. By contrast, the
assignment statement to k in the body of the function binds the name x to an
approximation of Boltzmann's constant.

>>> pressure(l, 273.15)

2269.974834

>>> pressure(l, 273.15, 3 * 6.022e23)
6809.924502

The pressure function is defined to take three arguments, but only two are provided in the
first call expression above. In this case, the value for n is taken from the def statement
default. If a third argument is provided, the default is ignored.

As a guideline, most data values used in a function's body should be expressed as default
values to named arguments, so that they are easy to inspect and can be changed by the
function caller. Some values that never change, such as the fundamental constant k, can
be bound in the function body or in the global frame.

Continue: 1.5 Control
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1.5 Control

The expressive power of the functions that we can define at this point is very limited,
because we have not introduced a way to make comparisons and to perform different
operations depending on the result of a comparison. Control statements will give us this
ability. They are statements that control the flow of a program's execution based on the
results of logical comparisons.

Statements differ fundamentally from the expressions that we have studied so far. They
have no value. Instead of computing something, executing a control statement determines
what the interpreter should do next.

1.5.1 Statements

So far, we have primarily considered how to evaluate expressions. However, we have seen
three kinds of statements already: assignment, def, and return statements. These lines of
Python code are not themselves expressions, although they all contain expressions as
components.

Rather than being evaluated, statements are executed. Each statement describes some
change to the interpreter state, and executing a statement applies that change. As we have
seen for return and assignment statements, executing statements can involve evaluating
subexpressions contained within them.

Expressions can also be executed as statements, in which case they are evaluated, but
their value is discarded. Executing a pure function has no effect, but executing a non-pure
function can cause effects as a consequence of function application.

Consider, for instance,

>>> def square(x):
mul(x, x) # Watch out! This call doesn't return a value.

This example is valid Python, but probably not what was intended. The body of the
function consists of an expression. An expression by itself is a valid statement, but the
effect of the statement is that the mu1 function is called, and the result is discarded. If you
want to do something with the result of an expression, you need to say so: you might store
it with an assignment statement or return it with a return statement:

>>> def square(x):
return mul (x, X)

Sometimes it does make sense to have a function whose body is an expression, when a
non-pure function like print is called.

>>> def print square(x):
print(square(x))

At its highest level, the Python interpreter's job is to execute programs, composed of



statements. However, much of the interesting work of computation comes from evaluating
expressions. Statements govern the relationship among different expressions in a program
and what happens to their results.

1.5.2 Compound Statements

In general, Python code is a sequence of statements. A simple statement is a single line
that doesn't end in a colon. A compound statement is so called because it is composed of
other statements (simple and compound). Compound statements typically span multiple
lines and start with a one-line header ending in a colon, which identifies the type of
statement. Together, a header and an indented suite of statements is called a clause. A
compound statement consists of one or more clauses:

<header>:

<statement>
<statement>

<separating header>:
<statement>
<statement>

We can understand the statements we have already introduced in these terms.

e Expressions, return statements, and assignment statements are simple statements.
¢ A def statement is a compound statement. The suite that follows the def header

defines the function body.

Specialized evaluation rules for each kind of header dictate when and if the statements in
its suite are executed. We say that the header controls its suite. For example, in the case of
def statements, we saw that the return expression is not evaluated immediately, but
instead stored for later use when the defined function is eventually called.

We can also understand multi-line programs now.

¢ To execute a sequence of statements, execute the first statement. If that statement
does not redirect control, then proceed to execute the rest of the sequence of
statements, if any remain.

This definition exposes the essential structure of a recursively defined sequence: a
sequence can be decomposed into its first element and the rest of its elements. The "rest"
of a sequence of statements is itself a sequence of statements! Thus, we can recursively
apply this execution rule. This view of sequences as recursive data structures will appear
again in later chapters.

The important consequence of this rule is that statements are executed in order, but later
statements may never be reached, because of redirected control.

Practical Guidance. When indenting a suite, all lines must be indented the same amount
and in the same way (use spaces, not tabs). Any variation in indentation will cause an error.



1.5.3 Defining Functions Ill: Local Assignment

Originally, we stated that the body of a user-defined function consisted only of a return
statement with a single return expression. In fact, functions can define a sequence of
operations that extends beyond a single expression.

Whenever a user-defined function is applied, the sequence of clauses in the suite of its
definition is executed in a local environment — an environment starting with a local frame
created by calling that function. A return statement redirects control: the process of
function application terminates whenever the first return statement is executed, and the
value of the return expression is the returned value of the function being applied.

Assignment statements can appear within a function body. For instance, this function
returns the absolute difference between two quantities as a percentage of the first, using a
two-step calculation:

def percent_difference(x, y): difference = abs(x-y) return 100 * difference / x result =
percent_difference(40, 50)

The effect of an assignment statement is to bind a name to a value in the first frame of the
current environment. As a consequence, assignment statements within a function body
cannot affect the global frame. The fact that functions can only manipulate their local
environment is critical to creating modular programs, in which pure functions interact only
via the values they take and return.

Of course, the percent_difference function could be written as a single expression, as
shown below, but the return expression is more complex.

>>> def percent difference(x, y):

return 100 * abs(x-y) / X
>>> percent difference(40, 50)
25.0

So far, local assignment hasn't increased the expressive power of our function definitions.
It will do so, when combined with other control statements. In addition, local assignment
also plays a critical role in clarifying the meaning of complex expressions by assigning
names to intermediate quantities.

1.5.4 Conditional Statements
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Python has a built-in function for computing absolute values.

>>> abs(-2)
2

We would like to be able to implement such a function ourselves, but we have no obvious
way to define a function that has a comparison and a choice. We would like to express that
if x is positive, abs (x) returns x. Furthermore, if x is 0, abs (x) returns 0. Otherwise, abs (x)



returns -x. In Python, we can express this choice with a conditional statement.

def absolute_value(x): """Compute abs(x).""" if x > 0: return x elif x == 0: return 0O else:

return -x result = absolute_value(-2)
This implementation of absolute value raises several important issues:

Conditional statements. A conditional statement in Python consists of a series of headers
and suites: a required if clause, an optional sequence of e1if clauses, and finally an
optional e1se clause:
if <expression>:

<suite>
elif <expression>:

<suite>

else:
<suite>

When executing a conditional statement, each clause is considered in order. The
computational process of executing a conditional clause follows.

1. Evaluate the header's expression.
2. If itis a true value, execute the suite. Then, skip over all subsequent clauses in the
conditional statement.

If the else clause is reached (which only happens if all if and e1if expressions evaluate to
false values), its suite is executed.

Boolean contexts. Above, the execution procedures mention "a false value" and "a true
value." The expressions inside the header statements of conditional blocks are said to be
in boolean contexts: their truth values matter to control flow, but otherwise their values are
not assigned or returned. Python includes several false values, including 0, None, and the
boolean value ralse. All other numbers are true values. In Chapter 2, we will see that every
built-in kind of data in Python has both true and false values.

Boolean values. Python has two boolean values, called True and ralse. Boolean values
represent truth values in logical expressions. The built-in comparison operations, >, <, >=,
<=, ==, !=, return these values.

>>> 4 < 2
False

>>> 5 >= 5
True

This second example reads "5 is greater than or equal to 5", and corresponds to the
function ge in the operator module.

>>> 0 == -
True

This final example reads "0 equals -0", and corresponds to eq in the operator module.
Notice that Python distinguishes assignment (=) from equality comparison (==), a
convention shared across many programming languages.



Boolean operators. Three basic logical operators are also built into Python:

>>> True and False
False

>>> True or False
True

>>> not False

True

Logical expressions have corresponding evaluation procedures. These procedures exploit
the fact that the truth value of a logical expression can sometimes be determined without
evaluating all of its subexpressions, a feature called short-circuiting.

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <1eft>.
2. If the result is a false value v, then the expression evaluates to v.
3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <1left>.
2. If the result is a true value v, then the expression evaluates to v.
3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression not <exp>:
1. Evaluate <exp>; The value is True if the result is a false value, and ralse otherwise.

These values, rules, and operators provide us with a way to combine the results of
comparisons. Functions that perform comparisons and return boolean values typically
begin with is, not followed by an underscore (e.g., isfinite, isdigit, isinstance, etc.).

1.5.5 Iteration
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In addition to selecting which statements to execute, control statements are used to
express repetition. If each line of code we wrote were only executed once, programming
would be a very unproductive exercise. Only through repeated execution of statements do
we unlock the full potential of computers. We have already seen one form of repetition: a
function can be applied many times, although it is only defined once. lterative control
structures are another mechanism for executing the same statements many times.

Consider the sequence of Fibonacci numbers, in which each number is the sum of the
preceding two:

o, 1, 1,2, 3, 5, 8, 13, 21, ...

Each value is constructed by repeatedly applying the sum-previous-two rule. The first and
second are fixed to 0 and 1. For instance, the eighth Fibonacci number is 13.

We can use a while statement to enumerate n Fibonacci numbers. We need to track how



many values we've created (x), along with the kth value (curr) and its predecessor (pred).
Step through this function and observe how the Fibonacci numbers evolve one by one,
bound to curr.

def fib(n): """Compute the nth Fibonacci number, for n >= 2.""" pred, curr =0, 1 #
Fibonacci numbers 1 and 2 k = 2 # Which Fib number is curr? while k < n: pred, curr =
curr, pred + curr kK = k + 1 return curr result = fib(8)

Remember that commas seperate multiple names and values in an assignment statement.
The line:

pred, curr = curr, pred + curr

has the effect of rebinding the name pred to the value of curr, and simultaneously
rebinding curr to the value of pred + curr. All of the expressions to the right of = are
evaluated before any rebinding takes place.

This order of events -- evaluating everything on the right of = before updating any bindings
on the left -- is essential for correctness of this function.

A while clause contains a header expression followed by a suite:

while <expression>:
<suite>

To execute a while clause:

1. Evaluate the header's expression.
2. If itis a true value, execute the suite, then return to step 1.

In step 2, the entire suite of the while clause is executed before the header expression is
evaluated again.

In order to prevent the suite of a while clause from being executed indefinitely, the suite
should always change some binding in each pass.

A while statement that does not terminate is called an infinite loop. Press <control>-c to
force Python to stop looping.

1.5.6 Testing

Testing a function is the act of verifying that the function's behavior matches expectations.
Our language of functions is now sufficiently complex that we need to start testing our
implementations.

A test is a mechanism for systematically performing this verification. Tests typically take
the form of another function that contains one or more sample calls to the function being
tested. The returned value is then verified against an expected result. Unlike most
functions, which are meant to be general, tests involve selecting and validating calls with
specific argument values. Tests also serve as documentation: they demonstrate how to call
a function and what argument values are appropriate.

Assertions. Programmers use assert statements to verify expectations, such as the output
of a function being tested. An assert statement has an expression in a boolean context,



followed by a quoted line of text (single or double quotes are both fine, but be consistent)
that will be displayed if the expression evaluates to a false value.

>>> assert fib(8) == 13, 'The 8th Fibonacci number should be 13'

When the expression being asserted evaluates to a true value, executing an assert
statement has no effect. When it is a false value, assert causes an error that halts
execution.

A test function for £ib should test several arguments, including extreme values of n.

>>> def fib test():

assert fib(2) == 1, 'The 2nd Fibonacci number should be 1'
assert fib(3) == 1, 'The 3rd Fibonacci number should be 1'
assert fib(50) == 7778742049, 'Error at the 50th Fibonacci number'

When writing Python in files, rather than directly into the interpreter, tests are typically
written in the same file or a neighboring file with the suffix _test.py.

Doctests. Python provides a convenient method for placing simple tests directly in the
docstring of a function. The first line of a docstring should contain a one-line description of
the function, followed by a blank line. A detailed description of arguments and behavior
may follow. In addition, the docstring may include a sample interactive session that calls
the function:

>>> def sum naturals(n):
"""Return the sum of the first n natural numbers.

>>> sum_naturals(10)
55

>>> sum_naturals(100)
5050

total, k =0, 1
while k <= n:

total, k = total + k, k + 1
return total

Then, the interaction can be verified via the doctest module. Below, the globals function
returns a representation of the global environment, which the interpreter needs in order to
evaluate expressions.

>>> from doctest import testmod
>>> testmod()
TestResults(failed=0, attempted=2)

To verify the doctest interactions for only a single function, we use a doctest function
called run_docstring examples. This function is (unfortunately) a bit complicated to call. Its
first argument is the function to test. The second should always be the result of the
expression globals(), a built-in function that returns the global environment. The third
argument is True to indicate that we would like "verbose" output: a catalog of all tests run.

>>> from doctest import run docstring examples
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>>> run_docstring examples(sum_naturals, globals(), True)
Finding tests in NoName
Trying:
sum_naturals(10)
Expecting:
55
ok
Trying:
sum_naturals(100)
Expecting:
5050
ok

When the return value of a function does not match the expected result, the
run_docstring examples function will report this problem as a test failure.

When writing Python in files, all doctests in a file can be run by starting Python with the
doctest command line option:

python3 -m doctest <python source file>

The key to effective testing is to write (and run) tests immediately after implementing new
functions. It is even good practice to write some tests before you implement, in order to
have some example inputs and outputs in your mind. A test that applies a single function is
called a unit test. Exhaustive unit testing is a hallmark of good program design.

Continue: 1.6 Higher-Order Functions
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1.6 Higher-Order Functions
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We have seen that functions are a method of abstraction that describe compound
operations independent of the particular values of their arguments. That is, in square,

>>> def square(x):
return x * x

we are not talking about the square of a particular number, but rather about a method for
obtaining the square of any number. Of course, we could get along without ever defining
this function, by always writing expressions such as

>>> 3 * 3
9
>>> 5 * 5
25

and never mentioning square explicitly. This practice would suffice for simple computations
such as square, but would become arduous for more complex examples such as abs or
fib. In general, lacking function definition would put us at the disadvantage of forcing us to
work always at the level of the particular operations that happen to be primitives in the
language (multiplication, in this case) rather than in terms of higher-level operations. Our
programs would be able to compute squares, but our language would lack the ability to
express the concept of squaring.

One of the things we should demand from a powerful programming language is the ability
to build abstractions by assigning names to common patterns and then to work in terms of
the names directly. Functions provide this ability. As we will see in the following examples,
there are common programming patterns that recur in code, but are used with a number of
different functions. These patterns can also be abstracted, by giving them names.

To express certain general patterns as named concepts, we will need to construct
functions that can accept other functions as arguments or return functions as values.
Functions that manipulate functions are called higher-order functions. This section shows
how higher-order functions can serve as powerful abstraction mechanisms, vastly
increasing the expressive power of our language.

1.6.1 Functions as Arguments

Consider the following three functions, which all compute summations. The first,
sum_naturals, computes the sum of natural numbers up to n:

>>> def sum naturals(n):
total, k =0, 1
while k <= n:
total, k = total + k, k + 1
return total



>>> sum_naturals(100)
5050

The second, sum_cubes, computes the sum of the cubes of natural numbers up to n.

>>> def sum cubes(n):
total, k =0, 1
while k <= n:
total, k = total + k*k*k, k + 1
return total

>>> sum cubes(100)
25502500

The third, pi_sum, computes the sum of terms in the series
8 8 8
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which converges to pi very slowly.

>>> def pi_sum(n):
total, k =0, 1
while k <= n:
total, k = total + 8 / ((4*k-3) * (4*k-1)), k + 1
return total

>>> pi sum(100)
3.1365926848388144

These three functions clearly share a common underlying pattern. They are for the most
part identical, differing only in name and the function of k used to compute the term to be
added. We could generate each of the functions by filling in slots in the same template:
def <name>(n):

total, k =0, 1

while k <= n:

total, k = total + <term>(k), k + 1
return total

The presence of such a common pattern is strong evidence that there is a useful
abstraction waiting to be brought to the surface. Each of these functions is a summation of
terms. As program designers, we would like our language to be powerful enough so that
we can write a function that expresses the concept of summation itself rather than only
functions that compute particular sums. We can do so readily in Python by taking the
common template shown above and transforming the "slots" into formal parameters:

In the example below, summation takes as its two arguments the upper bound n together
with the function term that computes the kth term. We can use summation just as we would
any function, and it expresses summations succinctly. Take the time to step through this
example, and notice how binding cube to the local names term ensures that the result 1*1+*1
+ 2%2%2 + 3*3%3 = 36 IS computed correctly. In this example, frames which are no longer
needed are removed to save space.



def summation(n, term): total, k = 0, 1 while k <= n: total, k = total + term(k), k + 1 return
total def cube(x): return x*x*x def sum_cubes(n): return summation(n, cube) result =
sum_cubes(3)

Using an identity function that returns its argument, we can also sum natural numbers
using exactly the same summation function.

>>> def summation(n, term):
total, k =0, 1
while k <= n:
total, k = total + term(k), k + 1
return total

>>> def identity(x):
return x

>>> def sum naturals(n):
return summation(n, identity)

>>> sum naturals(10)
55

The summation function can also be called directly, without definining another function for a
specific sequence.

>>> summation(10, square)
385

We can define pi_sum Using our summation abstraction by defining a function pi_term to
compute each term. We pass the argument 1e6, a shorthand for 1 * 10%6 = 1000000, tO
generate a close approximation to pi.

>>> def pi term(x):
return 8 / ((4*x-3) * (4*x-1))

>>> def pi sum(n):
return summation(n, pi_ term)

>>> pi sum(leb)
3.141592153589902

1.6.2 Functions as General Methods
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We introduced user-defined functions as a mechanism for abstracting patterns of
numerical operations so as to make them independent of the particular numbers involved.
With higher-order functions, we begin to see a more powerful kind of abstraction: some
functions express general methods of computation, independent of the particular functions
they call.



Despite this conceptual extension of what a function means, our environment model of
how to evaluate a call expression extends gracefully to the case of higher-order functions,
without change. When a user-defined function is applied to some arguments, the formal
parameters are bound to the values of those arguments (which may be functions) in a new
local frame.

Consider the following example, which implements a general method for iterative
improvement and uses it to compute the golden ratio. The golden ratio, often called "phi",
is a number near 1.6 that appears frequently in nature, art, and architecture.

An iterative improvement algorithm begins with a guess of a solution to an equation. It
repeatedly applies an update function to improve that guess, and applies a close
comparison to check whether the current guess is "close enough" to be considered
correct.

>>> def improve(update, close, guess=1l):
while not close(guess):
guess = update(guess)
return guess

This improve function is a general expression of repetitive refinement. It doesn't specify
what problem is being solved: those details are left to the update and close functions
passed in as arguments.

Among the well-known properties of the golden ratio are that it can be computed by
repeatedly summing the inverse of any positive number with 1, and that it is one less than
its square. We can express these properties as functions to be used with improve.

>>> def golden update(guess):
return 1l/guess + 1

>>> def square_close_ to_successor(guess):
return approx eq(guess * guess, guess + 1)

Above, we introduce a call to approx_eq that is meant to return True if its arguments are
approximately equal to each other. To implement, approx_eq, we can compare the absolute
value of the difference between two numbers to a small tolerance value.

>>> def approx_eq(x, y, tolerance=le-15):
return abs(x - y) < tolerance

Calling improve with the arguments golden update and square close to_ successor Will
compute a finite approximation to the golden ratio.

>>> improve(golden update, square close to_ successor)
1.6180339887498951

By tracing through the steps of evaluation, we can see how this result is computed. First, a
local frame for improve is constructed with bindings for update, close, and guess. In the
body of improve, the name close is bound t0 square close to successor, Which is called
on the initial value of guess. Trace through the rest of the steps to see the computational
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process that evolves to compute the golden ratio.

def improve(update, close, guess=1): while not close(guess): guess = update(guess) return
guess def golden_update(guess): return 1/guess + 1 def
square_close_to_successor(guess): return approx_eq(guess * guess, guess + 1) def
approx_eq(x, y, tolerance=1e-3): return abs(x - y) < tolerance phi = improve(golden_update,
square_close_to_successor)

This example illustrates two related big ideas in computer science. First, naming and
functions allow us to abstract away a vast amount of complexity. While each function
definition has been ftrivial, the computational process set in motion by our evaluation
procedure is quite intricate. Second, it is only by virtue of the fact that we have an
extremely general evaluation procedure for the Python language that small components
can be composed into complex processes. Understanding the procedure of interpreting
programs allows us to validate and inspect the process we have created.

As always, our new general method improve needs a test to check its correctness. The
golden ratio can provide such a test, because it also has an exact closed-form solution,
which we can compare to this iterative result.

>>> from math import sqgrt
>>> phi = 1/2 + sqrt(5)/2
>>> def improve test():
approx_phi = improve(golden update, square close to_successor)
assert approx eq(phi, approx phi), 'phi differs from its approximation'

>>> improve test()

For this test, no news is good news: improve_test returns wone after its assert statement is
executed successfully.

1.6.3 Defining Functions lll: Nested Definitions

The above examples demonstrate how the ability to pass functions as arguments
significantly enhances the expressive power of our programming language. Each general
concept or equation maps onto its own short function. One negative consequence of this
approach is that the global frame becomes cluttered with names of small functions, which
must all be unique. Another problem is that we are constrained by particular function
signatures: the update argument to improve must take exactly one argument. Nested
function definitions address both of these problems, but require us to enrich our
environment model.

Let's consider a new problem: computing the square root of a number. In programming
languages, "square root" is often abbreviated as sqrt. Repeated application of the
following update converges to the square root of a:

>>> def average(x, Vy):
return (x + y)/2

>>> def sqgrt_update(x, a):



return average(x, a/x)

This two-argument update function is incompatible with improve (it takes two arguments,
not one), and it provides only a single update, while we really care about taking square
roots by repeated updates. The solution to both of these issues is to place function
definitions inside the body of other definitions.

>>> def sqrt(a):
def sqrt update(x):
return average(x, a/x)
def sqgrt close(x):
return approx_eq(x * X, a)
return improve(sqgrt update, sqrt close)

Like local assignment, local def statements only affect the current local frame. These
functions are only in scope while sqrt is being evaluated. Consistent with our evaluation
procedure, these local def statements don't even get evaluated until sqrt is called.

Lexical scope. Locally defined functions also have access to the name bindings in the
scope in which they are defined. In this example, sqrt_update refers to the name a, which
is a formal parameter of its enclosing function sqrt. This discipline of sharing names
among nested definitions is called lexical scoping. Critically, the inner functions have
access to the names in the environment where they are defined (not where they are called).

We require two extensions to our environment model to enable lexical scoping.

1. Each user-defined function has a parent environment: the environment in which it
was defined.

2. When a user-defined function is called, its local frame extends its parent
environment.

Previous to sqrt, all functions were defined in the global environment, and so they all had
the same parent: the global environment. By contrast, when Python evaluates the first two
clauses of sqrt, it create functions that are associated with a local environment. In the call

>>> sqrt(256)
16.0

the environment first adds a local frame for sqrt and evaluates the def statements for
sqrt_update anCisqrt_close.

def average(x, y): return (x + y)/2 def improve(update, close, guess=1): while not
close(guess): guess = update(guess) return guess def approx_eq(x, y, tolerance=1e-3):
return abs(x - y) < tolerance def sqrt(a): def sqrt_update(x): return average(x, a/x) def
sqrt_close(x): return approx_eq(x * x, a) return improve(sqrt_update, sqrt_close) result =
sqrt(256)

Function values each have a new annotation that we will include in environment diagrams
from now on, a parent. The parent of a function value is the first frame of the environment
in which that function was defined. Functions without parent annotations were defined in
the global environment. When a user-defined function is called, the frame created has the
same parent as that function.



Subsequently, the name sqrt_update resolves to this newly defined function, which is
passed as an argument to improve. Within the body of improve, we must apply our update
function (bound to sqrt_update) to the initial guess x of 1. This final application creates an
environment for sqrt_update that begins with a local frame containing only x, but with the
parent frame sqrt still containing a binding for a.

def average(x, y): return (x + y)/2 def improve(update, close, guess=1): while not
close(guess): guess = update(guess) return guess def approx_eq(x, y, tolerance=1e-3):
return abs(x - y) < tolerance def sqrt(a): def sqrt_update(x): return average(x, a/x) def
sgrt_close(x): return approx_eq(x * x, a) return improve(sqrt_update, sqrt_close) result =
sqrt(256)

The most critical part of this evaluation procedure is the transfer of the parent for
sqrt_update to the frame created by calling sqrt_update. This frame is also annotated with
[parent=£f1].

Extended Environments. An environment can consist of an arbitrarily long chain of frames,
which always concludes with the global frame. Previous to this sqrt example,
environments had at most two frames: a local frame and the global frame. By calling
functions that were defined within other functions, via nested def statements, we can
create longer chains. The environment for this call to sqrt_update consists of three frames:
the local sqrt_update frame, the sqrt frame in which sqrt_update was defined (labeled £1),
and the global frame.

The return expression in the body of sqrt_update can resolve a value for a by following this
chain of frames. Looking up a name finds the first value bound to that name in the current
environment. Python checks first in the sqrt_update frame -- no a exists. Python checks
next in the parent frame, £1, and finds a binding for a to 256.

Hence, we realize two key advantages of lexical scoping in Python.

e The names of a local function do not interfere with names external to the function in
which it is defined, because the local function name will be bound in the current local
environment in which it was defined, rather than the global environment.

¢ A local function can access the environment of the enclosing function, because the
body of the local function is evaluated in an environment that extends the evaluation
environment in which it was defined.

The sqrt_update function carries with it some data: the value for a referenced in the
environment in which it was defined. Because they "enclose" information in this way,
locally defined functions are often called closures.

1.6.4 Functions as Returned Values
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We can achieve even more expressive power in our programs by creating functions whose
returned values are themselves functions. An important feature of lexically scoped
programming languages is that locally defined functions maintain their parent environment
when they are returned. The following example illustrates the utility of this feature.



Once many simple functions are defined, function composition is a natural method of
combination to include in our programming language. That is, given two functions £ (x) and
g(x), we might want to define n(x) = £(g(x)). We can define function composition using
our existing tools:

>>> def composel(f, g):
def h(x):
return f(g(x))
return h

The environment diagram for this example shows how the names £ and g are resolved
correctly, even in the presence of conflicting names.

def square(x): return x * x def successor(x): return x + 1 def compose1(f, g): def h(x): return
f(g(x)) return h def f(x): """Never called.""" return -x square_successor = compose1(square,
successor) result = square_successor(12)

The 1 in compose1 is meant to signify that the composed functions all take a single
argument. This naming convention is not enforced by the interpreter; the 1 is just part of
the function name.

At this point, we begin to observe the benefits of our effort to define precisely the
environment model of computation. No modification to our environment model is required
to explain our ability to return functions in this way.

1.6.5 Example: Newton's Method
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This extended example shows how function return values and local definitions can work
together to express general ideas concisely. We will implement an algorithm that is used
broadly in machine learning, scientific computing, hardware design, and optimization.

Newton's method is a classic iterative approach to finding the arguments of a
mathematical function that yield a return value of 0. These values are called the zeros of
the function. Finding a zero of a function is often equivalent to solving some other problem
of interest, such as computing a square root.

A motivating comment before we proceed: it is easy to take for granted the fact that we
know how to compute square roots. Not just Python, but your phone, web browser, or
pocket calculator can do so for you. However, part of learning computer science is
understanding how quantities like these can be computed, and the general approach
presented here is applicable to solving a large class of equations beyond those built into
Python.

Newton's method is an iterative improvement algorithm: it improves a guess of the zero for
any function that is differentiable, which means that it can be approximated by a straight
line at any point. Newton's method follows these linear approximations to find function
zeros.

Imagine a line through the point $(x, f(x))$ that has the same slope as the curve for function



$f(x)$ at that point. Such a line is called the tangent, and its slope is called the derivative of

$1$ at $x$.

This line's slope is the ratio of the change in function value to the change in function
argument. Hence, translating $x$ by $f(x)$ divided by the slope will give the argument
value at which this tangent line touches 0.
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A newton_update expresses the computational process of following this tangent line to O,
for a function £ and its derivative ds.

>>> def newton_ update(f, df):
def update(x):
return x - f£(x) / df(x)
return update

Finally, we can define the find root function in terms of newton_update, OUr improve
algorithm, and a comparison to see if $f(x)$ is near 0.

>>> def find zero(f, df):
def near zero(x):
return approx _eq(f(x), 0)
return improve(newton update(f, df), near zero)

Computing Roots. Using Newton's method, we can compute roots of arbitrary degree $n$.
The degree $n$ root of $a$ is $x$ such that $x \cdot x \cdot x \dots x = a$ with $x$
repeated $n$ times. For example,

e The square (second) root of 64 is 8, because $8 \cdot 8 = 643.
e The cube (third) root of 64 is 4, because $4 \cdot 4 \cdot 4 = 64%.
e The sixth root of 64 is 2, because $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 643%.

We can compute roots using Newton's method with the following observations:

* The square root of 64 (written $\sqrt{64}$) is the value $x$ such that $x/2 - 64 = 0$
» More generally, the degree $n$ root of $a$ (written $\sqrt[n]{a}$) is the value $x$
such that $x*n - a = 0$



If we can find a zero of this last equation, then we can compute degree $n$ roots. By
plotting the curves for $n$ equal to 2, 3, and 6 and $a$ equal to 64, we can visualize this
relationship.
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We first implement square_root by defining £ and its derivative df. We use from calculus
the fact that the derivative of $f(x) = xA2 - a$ is the linear function $df(x) = 2x$.

>>> def square_root newton(a):
def f(x):
return x * x - a
def df(x):
return 2 * x
return find zero(f, df)

>>> square_root newton(64)
8.0

Generalizing to roots of arbitrary degree $n$, we compute $f(x) = x~An - a$ and its derivative
$df(x) = n \cdot x{n-1}$.

>>> def power(x, n):

mwooon mwoon

Return x * x * x * ... * x for x repeated n times.
product, k =1, 0
while k < n:
product, k = product * x, k + 1
return product

>>> def nth root of a(n, a):
def f(x):
return power(x, n) - a
def df(x):
return n * power(x, n-1)
return find zero(f, df)

>>> nth_root_of a(2, 64)



8.0
>>> nth_root_of_a(3, 64)
4.0
>>> nth_root_of_a(6, 64)
2.0

The approximation error in all of these computations can be reduced by changing the
tolerance in approx _eq 10 a smaller number.

As you experiment with Newton's method, be aware that it will not always converge. The
initial guess of improve must be sufficiently close to the zero, and various conditions about
the function must be met. Despite this shortcoming, Newton's method is a powerful
general computational method for solving differentiable equations. Very fast algorithms for
logarithms and large integer division employ variants of the technique in modern
computers.

1.6.6 Currying
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We can use higher-order functions to convert a function that takes multiple arguments into
a chain of functions that each take a single argument. More specifically, given a function
f(x, y), we can define a function g such that g(x) (y) is equivalent to £(x, y). Here, gis a
higher-order function that takes in a single argument x and returns another function that
takes in a single argument y. This transformation is called currying.

As an example, we can define a curried version of the pow function:

>>> def curried pow(x):
def h(y):
return pow(x, y)
return h

>>> curried pow(2)(3)
8

Some programming languages, such as Haskell, only allow functions that take a single
argument, so the programmer must curry all multi-argument procedures. In more general
languages such as Python, currying is useful when we require a function that takes in only
a single argument. For example, the map pattern applies a single-argument function to a
sequence of values. In later chapters, we will see more general examples of the map
pattern, but for now, we can implement the pattern in a function:

>>> def map to_range(start, end, f):
while start < end:
print(f(start))
start = start + 1

We can use map_to range and curried pow to compute the first ten powers of two, rather
than specifically writing a function to do so:



>>> map_to range(0, 10, curried pow(2))
1

2

4

8
16
32
64
128
256
512

We can similarly use the same two functions to compute powers of other numbers.
Currying allows us to do so without writing a specific function for each number whose
powers we wish to compute.

In the above examples, we manually performed the currying transformation on the pow
function to obtain curried pow. Instead, we can define functions to automate currying, as
well as the inverse uncurrying transformation:

>>> def curry2(f):
"""Return a curried version of the given two-argument function.
def g(x):
def h(y):
return f(x, y)

"won

return h
return g

>>> def uncurry2(g):
"""Return a two-argument version of the given curried function.
def f(x, y):
return g(x)(y)
return f

mwoon

>>> pow_curried = curry2(pow)
>>> pow_curried(2)(5)

32

>>> map_to range(0, 10, pow _curried(2))
1

2

4

8

16

32

64

128

256

512

The curry2 function takes in a two-argument function £ and returns a single-argument
function g. When g is applied to an argument x, it returns a single-argument function n.
When n is applied to y, it calls £(x, y). Thus, curry2(£f) (x) (y) IS equivalent to £(x, y). The
uncurry2 function reverses the currying transformation, so that uncurry2 (curry2(f)) is
equivalent to £.



>>> uncurry2(pow_curried) (2, 5)
32

1.6.7 Lambda Expressions
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So far, each time we have wanted to define a new function, we needed to give it a name.
But for other types of expressions, we don't need to associate intermediate values with a
name. That is, we can compute a*b + c*d without having to name the subexpressions a*b
or c*d, or the full expression. In Python, we can create function values on the fly using
lambda expressions, which evaluate to unnamed functions. A lambda expression evaluates
to a function that has a single return expression as its body. Assignment and control
statements are not allowed.

>>> def composel(f, g):
return lambda x: f(g(x))

We can understand the structure of a 1ambda expression by constructing a corresponding
English sentence:

lambda x : f(g(x))
"A function that takes x and returns f(g(x))"

The result of a lambda expression is called a lambda function. It has no intrinsic name (and
so Python prints <1ambda> for the name), but otherwise it behaves like any other function.

>>> s = lambda x: x * X

>>> g

<function <lambda> at 0x£f3£f490>
>>> s5(12)

144

In an environment diagram, the result of a lambda expression is a function as well, named
with the greek letter A (lambda). Our compose example can be expressed quite compactly
with lambda expressions.

def composei(f, g): return lambda x: f(g(x)) f = composei(lambda x: x * x, lambda y: y + 1)
result = f(12)

Some programmers find that using unnamed functions from lambda expressions to be
shorter and more direct. However, compound 1ambda expressions are notoriously illegible,
despite their brevity. The following definition is correct, but many programmers have
trouble understanding it quickly.

>>> composel = lambda f,g: lambda x: f(g(x))

In general, Python style prefers explicit def statements to lambda expressions, but allows
them in cases where a simple function is needed as an argument or return value.

Such stylistic rules are merely guidelines; you can program any way you wish. However, as



you write programs, think about the audience of people who might read your program one
day. When you can make your program easier to understand, you do those people a favor.

The term lambda is a historical accident resulting from the incompatibility of written
mathematical notation and the constraints of early type-setting systems.

It may seem perverse to use lambda to introduce a procedure/function. The
notation goes back to Alonzo Church, who in the 1930's started with a "hat"
symbol; he wrote the square function as "y . y x y". But frustrated typographers
moved the hat to the left of the parameter and changed it to a capital lambda:
"Ny .y x y"; from there the capital lambda was changed to lowercase, and now

we see "Ay .y x y" in math books and (1ambda (y) (* y y)) in Lisp.

—Peter Norvig (norvig.com/lispy2.html)

Despite their unusual etymology, 1ambda expressions and the corresponding formal
language for function application, the lambda calculus, are fundamental computer science
concepts shared far beyond the Python programming community. We will revisit this topic
when we study the design of interpreters in Chapter 3.

1.6.8 Abstractions and First-Class Functions
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We began this section with the observation that user-defined functions are a crucial
abstraction mechanism, because they permit us to express general methods of computing
as explicit elements in our programming language. Now we've seen how higher-order
functions permit us to manipulate these general methods to create further abstractions.

As programmers, we should be alert to opportunities to identify the underlying abstractions
in our programs, build upon them, and generalize them to create more powerful
abstractions. This is not to say that one should always write programs in the most abstract
way possible; expert programmers know how to choose the level of abstraction
appropriate to their task. But it is important to be able to think in terms of these
abstractions, so that we can be ready to apply them in new contexts. The significance of
higher-order functions is that they enable us to represent these abstractions explicitly as
elements in our programming language, so that they can be handled just like other
computational elements.

In general, programming languages impose restrictions on the ways in which
computational elements can be manipulated. Elements with the fewest restrictions are said
to have first-class status. Some of the "rights and privileges" of first-class elements are:

They may be bound to names.

They may be passed as arguments to functions.
They may be returned as the results of functions.
4. They may be included in data structures.

W=

Python awards functions full first-class status, and the resulting gain in expressive power is
enormous.



1.6.9 Function Decorators
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Python provides special syntax to apply higher-order functions as part of executing a def
statement, called a decorator. Perhaps the most common example is a trace.

>>> def trace(fn):
def wrapped(x):

print('_> Ifnl '('l Xy l)')
return fn(x)
return wrapped

>>> Q@trace
def triple(x):
return 3 * x

>>> triple(12)
-> <function triple at 0x102a39848> ( 12 )
36

In this example, A higher-order function trace is defined, which returns a function that
precedes a call to its argument with a print statement that outputs the argument. The def
statement for triple has an annotation, etrace, which affects the execution rule for def. As
usual, the function triple is created. However, the name triple is not bound to this
function. Instead, the name triple is bound to the returned function value of calling trace
on the newly defined tripile function. In code, this decorator is equivalent to:

>>> def triple(x):
return 3 * x

>>> triple = trace(triple)

In the projects associated with this text, decorators are used for tracing, as well as
selecting which functions to call when a program is run from the command line.

Extra for experts. The decorator symbol ¢ may also be followed by a call expression. The
expression following e is evaluated first (just as the name trace was evaluated above), the
def statement second, and finally the result of evaluating the decorator expression is
applied to the newly defined function, and the result is bound to the name in the def
statement. A short tutorial on decorators by Ariel Ortiz gives further examples for interested
students.

Continue: 1.7 Recursive Functions
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1.7 Recursive Functions
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A function is called recursive if the body of the function calls the function itself, either
directly or indirectly. That is, the process of executing the body of a recursive function may
in turn require applying that function again. Recursive functions do not use any special
syntax in Python, but they do require some effort to understand and create.

We'll begin with an example problem: write a function that sums the digits of a natural
number. When designing recursive functions, we look for ways in which a problem can be
broken down into simpler problems. In this case, the operators ¢ and // can be used to
separate a number into two parts: its last digit and all but its last digit.

>>> 18117 % 10
7

>>> 18117 // 10
1811

The sum of the digits of 18117 is 1+s8+1+1+7 = 18. Just as we can separate the number, we
can separate this sum into the last digit, 7, and the sum of all but the last digit, 1+8+1+1 =
11. This separation gives us an algorithm: to sum the digits of a number n, add its last digit
n % 10 to the sum of the digits of n // 10. There's one special case: if a number has only
one digit, then the sum of its digits is itself. This algorithm can be implemented as a
recursive function.

>>> def sum digits(n):
"""Return the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all but last, last = n // 10, n % 10
return sum digits(all_but_last) + last

This definition of sum digits is both complete and correct, even though the sum digits
function is called within its own body. The problem of summing the digits of a number is
broken down into two steps: summing all but the last digit, then adding the last digit. Both
of these steps are simpler than the original problem. The function is recursive because the
first step is the same kind of problem as the original problem. That is, sum digits is exactly
the function we need in order to implement sum digits.

>>> sum _digits(9)

9

>>> sum digits(18117)

18

>>> sum digits(9437184)

36

>>> sum digits(11408855402054064613470328848384)
126

We can understand precisely how this recursive function applies successfully using our



environment model of computation. No new rules are required.

def sum_digits(n): if n < 10: return n else: all_but_last, last =n // 10, n % 10 return
sum_digits(all_but_last) + last sum_digits(738)

When the def statement is executed, the name sum digits is bound to a new function, but
the body of that function is not yet executed. Therefore, the circular nature of sum_digits is
not a problem yet. Then, sum digits is called on 738:

1. Alocal frame for sum_digits with n bound to 738 is created, and the body of
sum_digits is executed in the environment that starts with that frame.

2. Since 738 is not less than 10, the assignment statement on line 4 is executed,
splitting 738 into 73 and 8.
3. In the following return statement, sum_digits is called on 73, the value of

all but_last in the current environment.

3. Another local frame for sum_digits is created, this time with n bound to 73. The body
of sum_digits is again executed in the new environment that starts with this frame.

4. Since 73 is also not less than 10, 73 is split into 7 and 3 and sum_digits is called on
7, the value of a11_but_1ast evaluated in this frame.

5. A third local frame for sum_digits is created, with n bound to 7.

6. In the environment starting with this frame, it is true that n < 10, and therefore 7 is

returned.

7. In the second local frame, this return value 7 is summed with 3, the value of 1ast, to
return 10.

8. In the first local frame, this return value 10 is summed with 8, the value of 1ast, to
return 18.

This recursive function applies correctly, despite its circular character, because it is applied
twice, but with a different argument each time. Moreover, the second application was a
simpler instance of the digit summing problem than the first. Generate the environment
diagram for the call sum digits(18117) to see that each successive call t0 sum digits takes
a smaller argument than the last, until eventually a single-digit input is reached.

This example also illustrates how functions with simple bodies can evolve complex
computational processes by using recursion.

1.7.1 The Anatomy of Recursive Functions
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A common pattern can be found in the body of many recursive functions. The body begins
with a base case, a conditional statement that defines the behavior of the function for the
inputs that are simplest to process. In the case of sum digits, the base case is any single-
digit argument, and we simply return that argument. Some recursive functions will have
multiple base cases.

The base cases are then followed by one or more recursive calls. Recursive calls always
have a certain character: they simplify the original problem. Recursive functions express



computation by simplifying problems incrementally. For example, summing the digits of 7
is simpler than summing the digits of 73, which in turn is simpler than summing the digits
of 738. For each subsequent call, there is less work left to be done.

Recursive functions often solve problems in a different way than the iterative approaches
that we have used previously. Consider a function fact to compute n factorial, where for
example fact (4) computes $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 243%.

A natural implementation using a while statement accumulates the total by multiplying
together each positive integer up to n.

>>> def fact _iter(n):
total, k =1, 1
while k <= n:
total, k = total * k, k + 1
return total

>>> fact iter(4)
24

On the other hand, a recursive implementation of factorial can express fact(n) in terms of
fact(n-1), a simpler problem. The base case of the recursion is the simplest form of the
problem: fact(1) is 1.

def fact(n): if n == 1: return 1 else: return n * fact(n-1) fact(4)

These two factorial functions differ conceptually. The iterative function constructs the result
from the base case of 1 to the final total by successively multiplying in each term. The
recursive function, on the other hand, constructs the result directly from the final term, n,
and the result of the simpler problem, fact(n-1).

As the recursion "unwinds" through successive applications of the fact function to simpler
and simpler problem instances, the result is eventually built starting from the base case.
The recursion ends by passing the argument 1 to fact; the result of each call depends on
the next until the base case is reached.

The correctness of this recursive function is easy to verify from the standard definition of
the mathematical function for factorial:

\begin{align*} (n-1)! &= (n-1) \cdot (n-2) \cdot \dots \cdot 1 \\ n! &= n \cdot (n-1) \cdot (n-2)
\cdot \dots \cdot 1 \\ n! &= n \cdot (n-1)! \end{align*}

While we can unwind the recursion using our model of computation, it is often clearer to
think about recursive calls as functional abstractions. That is, we should not care about
how fact(n-1) is implemented in the body of fact; we should simply trust that it computes
the factorial of n-1. Treating a recursive call as a functional abstraction has been called a
recursive leap of faith. We define a function in terms of itself, but simply trust that the
simpler cases will work correctly when verifying the correctness of the function. In this
example, we trust that fact (n-1) will correctly compute (n-1)t; we must only check that n:
is computed correctly if this assumption holds. In this way, verifying the correctness of a
recursive function is a form of proof by induction.

The functions fact_jter and fact also differ because the former must introduce two



additional names, total and k, that are not required in the recursive implementation. In
general, iterative functions must maintain some local state that changes throughout the
course of computation. At any point in the iteration, that state characterizes the result of
completed work and the amount of work remaining. For example, when k is 3 and total is
2, there are still two terms remaining to be processed, 3 and 4. On the other hand, fact is
characterized by its single argument n. The state of the computation is entirely contained
within the structure of the environment, which has return values that take the role of total,
and binds n to different values in different frames rather than explicitly tracking k.

Recursive functions leverage the rules of evaluating call expressions to bind names to
values, often avoiding the nuisance of correctly assigning local names during iteration. For
this reason, recursive functions can be easier to define correctly. However, learning to
recognize the computational processes evolved by recursive functions certainly requires
practice.

1.7.2 Mutual Recursion
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When a recursive procedure is divided among two functions that call each other, the
functions are said to be mutually recursive. As an example, consider the following definition
of even and odd for non-negative integers:

e a number is even if it is one more than an odd number
e a number is odd if it is one more than an even number
e 0is even

Using this definition, we can implement mutually recursive functions to determine whether
a number is even or odd:

def is_even(n): if n == 0: return True else: return is_odd(n-1) def is_odd(n): if n == 0: return
False else: return is_even(n-1) result = is_even(4)

Mutually recursive functions can be turned into a single recursive function by breaking the
abstraction boundary between the two functions. In this example, the body of is_odd can
be incorporated into that of is_even, making sure to replace n with n-1 in the body of
is_odd to reflect the argument passed into it:

>>> def is_even(n):
if n == 0:
return True
else:
if (n-1) ==
return False
else:
return is_even((n-1)-1)

As such, mutual recursion is no more mysterious or powerful than simple recursion, and it
provides a mechanism for maintaining abstraction within a complicated recursive program.



1.7.3 Printing in Recursive Functions
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The computational process evolved by a recursive function can often be visualized using
calls to print. As an example, we will implement a function cascade that prints all prefixes
of a number from largest to smallest to largest.

>>> def cascade(n):

mwooon woon

Print a cascade of prefixes of n.
if n < 10:
print(n)
else:
print(n)
cascade(n//10)
print(n)

>>> cascade(2013)
2013

201

20

2

20

201

2013

In this recursive function, the base case is a single-digit number, which is printed.
Otherwise, a recursive call is placed between two calls to print.

Video: Show Hide

It is not a rigid requirement that base cases be expressed before recursive calls. In fact,
this function can be expressed more compactly by observing that print (n) is repeated in
both clauses of the conditional statement, and therefore can precede it.

>>> def cascade(n):

mwooon mwoon

Print a cascade of prefixes of n.
print(n)

if n >= 10:

cascade(n//10)

print(n)

As another example of mutual recursion, consider a two-player game in which there are n
initial pebbles on a table. The players take turns, removing either one or two pebbles from
the table, and the player who removes the final pebble wins. Suppose that Alice and Bob
play this game, each using a simple strategy:

e Alice always removes a single pebble
e Bob removes two pebbles if an even number of pebbles is on the table, and one
otherwise

Given n initial pebbles and Alice starting, who wins the game?



A natural decomposition of this problem is to encapsulate each strategy in its own
function. This allows us to modify one strategy without affecting the other, maintaining the
abstraction barrier between the two. In order to incorporate the turn-by-turn nature of the
game, these two functions call each other at the end of each turn.

>>> def play alice(n):
if n ==
print("Bob wins!")
else:
play bob(n-1)

>>> def play bob(n):
if n == 0:
print("Alice wins!")
elif is even(n):
play alice(n-2)
else:
play alice(n-1)

>>> play alice(20)
Bob wins!

In play_bob, we see that multiple recursive calls may appear in the body of a function.
However, in this example, each call to play bob calls play alice at most once. In the next
section, we consider what happens when a single function call makes multiple direct
recursive calls.

1.7.4 Tree Recursion
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Another common pattern of computation is called tree recursion, in which a function calls
itself more than once. As an example, consider computing the sequence of Fibonacci
numbers, in which each number is the sum of the preceding two.

def fib(n): if n == 1: return 0 if n == 2: return 1 else: return fib(n-2) + fib(n-1) result = fib(6)

This recursive definition is tremendously appealing relative to our previous attempts: it
exactly mirrors the familiar definition of Fibonacci numbers. A function with multiple
recursive calls is said to be tree recursive because each call branches into multiple smaller
calls, each of which branches into yet smaller calls, just as the branches of a tree become
smaller but more numerous as they extend from the trunk.

We were already able to define a function to compute Fibonacci numbers without tree
recursion. In fact, our previous attempts were more efficient, a topic discussed later in the
text. Next, we consider a problem for which the tree recursive solution is substantially
simpler than any iterative alternative.

1.7.5 Example: Partitions



Video: Show Hide

The number of partitions of a positive integer n, using parts up to size m, is the number of
ways in which n can be expressed as the sum of positive integer parts up to m in increasing
order. For example, the number of partitions of 6 using parts up to 4 is 9.

1. 6 =2 + 4

2.6 =1+1+ 4

3. 6 =3+3

4. 6 =1+ 2+ 3

5. 6=1+1+1+3

6. 6 =2+ 2+ 2

7.6 =1+1+2+2

8. 6=1+1+1+1+2
9.6 =1+1+1+1+1+1

We will define a function count partitions(n, m) that returns the number of different
partitions of n using parts up to m. This function has a simple solution as a tree-recursive
function, based on the following observation:

The number of ways to partition n using integers up to m equals

1. the number of ways to partition n-m using integers up to m, and
2. the number of ways to partition n using integers up to m-1.

To see why this is true, observe that all the ways of partitioning n can be divided into two
groups: those that include at least one m and those that do not. Moreover, each partition in
the first group is a partition of n-m, followed by m added at the end. In the example above,
the first two partitions contain 4, and the rest do not.

Therefore, we can recursively reduce the problem of partitioning n using integers up to m
into two simpler problems: (1) partition a smaller number n-m, and (2) partition with smaller
components up to m-1.

To complete the implementation, we need to specify the following base cases:

1. There is one way to partition 0O: include no parts.
2. There are 0 ways to partition a negative n.

3. There are 0 ways to partition any n greater than 0 using parts of size 0 or less.

>>> def count partitions(n, m):
"""Count the ways to partition n using parts up to m."""
if n == 0:
return 1
elif n < 0:
return 0
elif m == 0:
return 0
else:
return count partitions(n-m, m) + count partitions(n, m-1)

>>> count_ partitions(6, 4)



9

>>> count_partitions(5, 5)

7

>>> count_partitions (10, 10)
42

>>> count_partitions (15, 15)
176

>>> count_partitions (20, 20)
627

We can think of a tree-recursive function as exploring different possibilities. In this case,
we explore the possibility that we use a part of size m and the possibility that we do not.
The first and second recursive calls correspond to these possibilities.

Implementing this function without recursion would be substantially more involved.
Interested readers are encouraged to try.
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Chapter 2: Building Abstractions with Data

2.1 Introduction

We concentrated in Chapter 1 on computational processes and on the role of functions in
program design. We saw how to use primitive data (humbers) and primitive operations
(arithmetic), how to form compound functions through composition and control, and how
to create functional abstractions by giving names to processes. We also saw that higher-
order functions enhance the power of our language by enabling us to manipulate, and
thereby to reason, in terms of general methods of computation. This is much of the
essence of programming.

This chapter focuses on data. The techniques we investigate here will allow us to represent
and manipulate information about many different domains. Due to the explosive growth of
the Internet, a vast amount of structured information is freely available to all of us online,
and computation can be applied to a vast range of different problems. Effective use of
built-in and user-defined data types are fundamental to data processing applications.

2.1.1 Native Data Types

Every value in Python has a class that determines what type of value it is. Values that share
a class also share behavior. For example, the integers 1 and 2 are both instances of the int
class. These two values can be treated similarly. For example, they can both be negated or
added to another integer. The built-in type function allows us to inspect the class of any
value.

>>> type(2)
<class 'int'>

The values we have used so far are instances of a small number of native data types that
are built into the Python language. Native data types have the following properties:

1. There are expressions that evaluate to values of native types, called literals.
2. There are built-in functions and operators to manipulate values of native types.

The int class is the native data type used to represent integers. Integer literals (sequences
of adjacent numerals) evaluate to int values, and mathematical operators manipulate these
values.

>>> 12 + 3000000000000000000000000
3000000000000000000000012

Python includes three native numeric types: integers (int), real numbers (£10at), and
complex numbers (complex).

>>> type(l.5)
<class 'float'>
>>> type(1l+13j)



<class 'complex'>

Floats. The name f1oat comes from the way in which real numbers are represented in
Python and many other programming languages: a "floating point" representation. While
the details of how numbers are represented is not a topic for this text, some high-level
differences between int and f1oat objects are important to know. In particular, int objects
represent integers exactly, without any approximation or limits on their size. On the other
hand, £1o0at objects can represent a wide range of fractional numbers, but not all numbers
can be represented exactly, and there are minimum and maximum values. Therefore, f1oat
values should be treated as approximations to real values. These approximations have only
a finite amount of precision. Combining f1oat values can lead to approximation errors;
both of the following expressions would evaluate to 7 if not for approximation.

>>> 7 / 3 * 3
7.0

>>> 1/ 3 * 7 * 3
6.999999999999999

Although int values are combined above, dividing one int by another yields a f1oat value:
a truncated finite approximation to the actual ratio of the two integers divided.

>>> type(1/3)
<class 'float'>
>>> 1/3
0.3333333333333333

Problems with this approximation appear when we conduct equality tests.

>>> 1/3 == 0.333333333333333312345 # Beware of float approximation
True

These subtle differences between the int and float class have wide-ranging
consequences for writing programs, and so they are details that must be memorized by
programmers. Fortunately, there are only a handful of native data types, limiting the
amount of memorization required to become proficient in a programming language.
Moreover, these same details are consistent across many programming languages,
enforced by community guidelines such as the |IEEE 754 floating point standard.

Non-numeric types. Values can represent many other types of data, such as sounds,
images, locations, web addresses, network connections, and more. A few are represented
by native data types, such as the boo1 class for values True and ralse. The type for most
values must be defined by programmers using the means of combination and abstraction
that we will develop in this chapter.

The following sections introduce more of Python's native data types, focusing on the role
they play in creating useful data abstractions. For those interested in further details, a
chapter on native data types in the online book Dive Into Python 3 gives a pragmatic
overview of all Python's native data types and how to manipulate them, including
numerous usage examples and practical tips.


http://en.wikipedia.org/wiki/IEEE_floating_point
http://getpython3.com/diveintopython3/native-datatypes.html

Continue: 2.2 Data Abstraction
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2.2 Data Abstraction

As we consider the wide set of things in the world that we would like to represent in our
programs, we find that most of them have compound structure. For example, a geographic
position has latitude and longitude coordinates. To represent positions, we would like our
programming language to have the capacity to couple together a latitude and longitude to
form a pair, a compound data value that our programs can manipulate as a single
conceptual unit, but which also has two parts that can be considered individually.

The use of compound data enables us to increase the modularity of our programs. If we
can manipulate geographic positions as whole values, then we can shield parts of our
program that compute using positions from the details of how those positions are
represented. The general technique of isolating the parts of a program that deal with how
data are represented from the parts that deal with how data are manipulated is a powerful
design methodology called data abstraction. Data abstraction makes programs much
easier to design, maintain, and modify.

Data abstraction is similar in character to functional abstraction. When we create a
functional abstraction, the details of how a function is implemented can be suppressed,
and the particular function itself can be replaced by any other function with the same
overall behavior. In other words, we can make an abstraction that separates the way the
function is used from the details of how the function is implemented. Analogously, data
abstraction isolates how a compound data value is used from the details of how it is
constructed.

The basic idea of data abstraction is to structure programs so that they operate on
abstract data. That is, our programs should use data in such a way as to make as few
assumptions about the data as possible. At the same time, a concrete data representation
is defined as an independent part of the program.

These two parts of a program, the part that operates on abstract data and the part that
defines a concrete representation, are connected by a small set of functions that
implement abstract data in terms of the concrete representation. To illustrate this
technique, we will consider how to design a set of functions for manipulating rational
numbers.

2.2.1 Example: Rational Numbers

A rational number is a ratio of integers, and rational numbers constitute an important sub-
class of real numbers. A rational number such as 1/3 or 17/29 is typically written as:

<numerator>/<denominator>
where both the <numerator> and <denominator> are placeholders for integer values. Both

parts are needed to exactly characterize the value of the rational number. Actually dividing
integers produces a float approximation, losing the exact precision of integers.

>>> 1/3
0.3333333333333333



>>> 1/3 == 0.333333333333333300000 # Dividing integers yields an approximation
True

However, we can create an exact representation for rational numbers by combining
together the numerator and denominator.

We know from using functional abstractions that we can start programming productively
before we have an implementation of some parts of our program. Let us begin by
assuming that we already have a way of constructing a rational number from a numerator
and a denominator. We also assume that, given a rational number, we have a way of
selecting its numerator and its denominator component. Let us further assume that the
constructor and selectors are available as the following three functions:

e rational(n, d) returns the rational number with numerator n and denominator 4.
¢ numer (x) returns the numerator of the rational number x.
¢ denom(x) returns the denominator of the rational number x.

We are using here a powerful strategy for designing programs: wishful thinking. We haven't
yet said how a rational number is represented, or how the functions numer, denom, and
rational should be implemented. Even so, if we did define these three functions, we could
then add, multiply, print, and test equality of rational numbers:

>>> def add rationals(x, y):
nx, dx = numer(x), denom(x)
ny, dy numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

>>> def mul rationals(x, y):
return rational (numer(x) * numer(y), denom(x) * denom(y))

>>> def print rational(x):
print (numer(x), '/', denom(x))

>>> def rationals are equal(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

Now we have the operations on rational numbers defined in terms of the selector functions
numer and denom, and the constructor function rational, but we haven't yet defined these
functions. What we need is some way to glue together a numerator and a denominator into
a compound value.

2.2.2 Pairs

To enable us to implement the concrete level of our data abstraction, Python provides a
compound structure called a 1ist, which can be constructed by placing expressions within
square brackets separated by commas. Such an expression is called a list literal.

>>> [10, 20]
[10, 20]



The elements of a list can be accessed in two ways. The first way is via our familiar method
of multiple assignment, which unpacks a list into its elements and binds each element to a
different name.

>>> pair
>>> pair
[10, 20]
>>> x, y
>>> x

10

>>> y

20

[10, 20]

pair

A second method for accessing the elements in a list is by the element selection operator,
also expressed using square brackets. Unlike a list literal, a square-brackets expression
directly following another expression does not evaluate to a 1ist value, but instead selects
an element from the value of the preceding expression.

>>> pair[0]
10
>>> pair[1l]
20

Lists in Python (and sequences in most other programming languages) are 0-indexed,
meaning that the index 0 selects the first element, index 1 selects the second, and so on.
One intuition that supports this indexing convention is that the index represents how far an
element is offset from the beginning of the list.

The equivalent function for the element selection operator is called getitem, and it also
uses 0-indexed positions to select elements from a list.

>>> from operator import getitem
>>> getitem(pair, 0)

10

>>> getitem(pair, 1)

20

Two-element lists are not the only method of representing pairs in Python. Any way of
bundling two values together into one can be considered a pair. Lists are a common
method to do so. Lists can also contain more than two elements, as we will explore later in
the chapter.

Representing Rational Numbers. We can now represent a rational number as a pair of two
integers: a numerator and a denominator.

>>> def rational(n, d):
return [n, d]

>>> def numer(x):
return x[0]

>>> def denom(x):
return x[1]



Together with the arithmetic operations we defined earlier, we can manipulate rational
numbers with the functions we have defined.

>>> half = rational(l, 2)

>>> print rational(half)

1/ 2

>>> third = rational(l, 3)

>>> print rational(mul_ rationals(half, third))
1/ 6

>>> print rational(add_rationals(third, third))
6 /9

As the example above shows, our rational number implementation does not reduce rational
numbers to lowest terms. We can remedy this flaw by changing the implementation of
rational. If we have a function for computing the greatest common denominator of two
integers, we can use it to reduce the numerator and the denominator to lowest terms
before constructing the pair. As with many useful tools, such a function already exists in
the Python Library.

>>> from fractions import gcd
>>> def rational(n, d):

g = gcd(n, d)

return (n//g, d//9)

The floor division operator, //, expresses integer division, which rounds down the
fractional part of the result of division. Since we know that g divides both n and d evenly,
integer division is exact in this case. This revised rational implementation ensures that
rationals are expressed in lowest terms.

>>> print rational(add_rationals(third, third))
2/ 3

This improvement was accomplished by changing the constructor without changing any of
the functions that implement the actual arithmetic operations.

2.2.3 Abstraction Barriers

Before continuing with more examples of compound data and data abstraction, let us
consider some of the issues raised by the rational number example. We defined operations
in terms of a constructor rational and selectors numer and denom. In general, the underlying
idea of data abstraction is to identify a basic set of operations in terms of which all
manipulations of values of some kind will be expressed, and then to use only those
operations in manipulating the data. By restricting the use of operations in this way, it is
much easier to change the representation of abstract data without changing the behavior
of a program.

For rational numbers, different parts of the program manipulate rational numbers using
different operations, as described in this table.



Parts of the program that... Treat rationals as... Using only...

Use rational numbers to whole data values add_rational, mul rational,
perform computation rationals_are equal,

print_rational

Create rationals or numerators and rational, numer, denom
implement rational denominators

operations

Implement selectors and two-element lists list literals and element selection

constructor for rationals

In each layer above, the functions in the final column enforce an abstraction barrier. These
functions are called by a higher level and implemented using a lower level of abstraction.

An abstraction barrier violation occurs whenever a part of the program that can use a
higher level function instead uses a function in a lower level. For example, a function that
computes the square of a rational number is best implemented in terms of mul_rational,
which does not assume anything about the implementation of a rational number.

>>> def square_rational(x):
return mul rational(x, x)

Referring directly to numerators and denominators would violate one abstraction barrier.

>>> def square_rational violating once(x):
return rational (numer(x) * numer(x), denom(x) * denom(x))

Assuming that rationals are represented as two-element lists would violate two abstraction
barriers.

>>> def square_rational violating twice(x):
return [x[0] * x[0], x[1] * x[1]]

Abstraction barriers make programs easier to maintain and to modify. The fewer functions
that depend on a particular representation, the fewer changes are required when one
wants to change that representation. All of these implementations of square rational have
the correct behavior, but only the first is robust to future changes. The square_rational
function would not require updating even if we altered the representation of rational
numbers. By contrast, square rational violating once Would need to be changed
whenever the selector or constructor signatures changed, and

square_rational violating twice Would require updating whenever the implementation of
rational numbers changed.

2.2.4 The Properties of Data



Abstraction barriers shape the way in which we think about data. A valid representation of
a rational number is not restricted to any particular implementation (such as a two-element
list); it is a value returned by rational that can be passed t0 numer, and denom. In addition,
the appropriate relationship must hold among the constructor and selectors. That is, if we
construct a rational number x from integers n and 4, then it should be the case that

numer (x)/denom(x) IS equal to n/d.

In general, we can express abstract data using a collection of selectors and constructors,
together with some behavior conditions. As long as the behavior conditions are met (such
as the division property above), the selectors and constructors constitute a valid
representation of a kind of data. The implementation details below an abstraction barrier
may change, but if the behavior does not, then the data abstraction remains valid, and any
program written using this data abstraction will remain correct.

This point of view can be applied broadly, including to the pair values that we used to
implement rational numbers. We never actually said much about what a pair was, only that
the language supplied the means to create and manipulate lists with two elements. The
behavior we require to implement a pair is that it glues two values together. Stated as a
behavior condition,

e |f a pair p was constructed from values x and y, then select(p, 0) returns x, and
select(p, 1) returnsy.

We don't actually need the 1ist type to create pairs. Instead, we can implement two
functions pair and select that fulfill this description just as well as a two-element list.

>>> def pair(x, vy):
"""Return a function that represents a pair."""
def get(index):
if index ==
return x
elif index == 1:
return y
return get

>>> def select(p, 1i):
"""Return the element at index i of pair p."""
return p(i)

With this implementation, we can create and manipulate pairs.

>>> p = pair (20, 14)
>>> select(p, 0)

20

>>> select(p, 1)

14

This use of higher-order functions corresponds to nothing like our intuitive notion of what
data should be. Nevertheless, these functions suffice to represent pairs in our programs.
Functions are sufficient to represent compound data.

The point of exhibiting the functional representation of a pair is not that Python actually



works this way (lists are implemented more directly, for efficiency reasons) but that it could
work this way. The functional representation, although obscure, is a perfectly adequate
way to represent pairs, since it fulfills the only conditions that pairs need to fulfill. The
practice of data abstraction allows us to switch among representations easily.

Continue: 2.3 Sequences
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2.3 Sequences

A sequence is an ordered collection of values. The sequence is a powerful, fundamental
abstraction in computer science. Sequences are not instances of a particular built-in type
or abstract data representation, but instead a collection of behaviors that are shared
among several different types of data. That is, there are many kinds of sequences, but they
all share common behavior. In particular,

Length. A sequence has a finite length. An empty sequence has length 0.

Element selection. A sequence has an element corresponding to any non-negative integer
index less than its length, starting at 0 for the first element.

Python includes several native data types that are sequences, the most important of which
is the 1ist.

2.3.1 Lists

A 1ist value is a sequence that can have arbitrary length. Lists have a large set of built-in
behaviors, along with specific syntax to express those behaviors. We have already seen
the list literal, which evaluates to a 1ist instance, as well as an element selection
expression that evaluates to a value in the list. The built-in 1en function returns the length
of a sequence. Below, digits is a list with four elements. The element at index 3 is 8.

>>> digits = [1, 8, 2, 8]
>>> len(digits)

4

>>> digits[3]

8

Additionally, lists can be added together and multiplied by integers. For sequences,
addition and multiplication do not add or multiply elements, but instead combine and
replicate the sequences themselves. That is, the add function in the operator module (and
the + operator) yields a list that is the concatenation of the added arguments. The mu1
function in operator (and the * operator) can take a list and an integer k to return the list
that consists of k repetitions of the original list.

>>> [2, 7] + digits * 2
(2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

Any values can be included in a list, including another list. Element selection can be
applied multiple times in order to select a deeply nested element in a list containing lists.

>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1]

[30, 40]

>>> pairs[1][0]

30



2.3.2 Sequence lteration

In many cases, we would like to iterate over the elements of a sequence and perform some
computation for each element in turn. This pattern is so common that Python has an
additional control statement to process sequential data: the for statement.

Consider the problem of counting how many times a value appears in a sequence. We can
implement a function to compute this count using a while loop.

>>> def count(s, value):

"""Count the number of occurrences of value in sequence s.
total, index = 0, 0
while index < len(s):

if s[index] == value:

total = total + 1

index = index + 1

return total

mwomon

>>> count(digits, 8)
2

The Python for statement can simplify this function body by iterating over the element
values directly without introducing the name index at all.

>>> def count(s, value):
"""Count the number of occurrences of value in sequence s.
total = 0
for elem in s:

mwomon

if elem == value:
total = total + 1
return total

>>> count(digits, 8)
2

A for statement consists of a single clause with the form:

for <name> in <expression>:
<suite>

A for statement is executed by the following procedure:

1. Evaluate the header <expression>, which must yield an iterable value.

2. For each element value in that iterable value, in order:
1. Bind <name> to that value in the current frame.

2. Execute the <suite>.

This execution procedure refers to iterable values. Lists are a type of sequence, and
sequences are iterable values. Their elements are considered in their sequential order.
Python includes other iterable types, but we will focus on sequences for now; the general
definition of the term "iterable" appears in the section on iterators in Chapter 4.

An important consequence of this evaluation procedure is that <name> will be bound to the



last element of the sequence after the for statement is executed. The for loop introduces
yet another way in which the environment can be updated by a statement.

Sequence unpacking. A common pattern in programs is to have a sequence of elements
that are themselves sequences, but all of a fixed length. A for statement may include
multiple names in its header to "unpack" each element sequence into its respective
elements. For example, we may have a list of two-element lists.

>>> pairs = [[1, 21, [2, 21, [2, 31, [4, 411

and wish to find the number of these pairs that have the same first and second element.

>>> same _count = 0

The following for statement with two names in its header will bind each name x and y to
the first and second elements in each pair, respectively.

>>> for x, y in pairs:
if x == y:
same_count = same_count + 1

>>> same_count
2

This pattern of binding multiple names to multiple values in a fixed-length sequence is
called sequence unpacking; it is the same pattern that we see in assignment statements
that bind multiple names to multiple values.

Ranges. A range is another built-in type of sequence in Python, which represents a range
of integers. Ranges are created with range, which takes two integer arguments: the first
number and one beyond the last number in the desired range.

>>> range(l, 10) # Includes 1, but not 10
range(1l, 10)

Calling the 1ist constructor on a range evaluates to a list with the same elements as the
range, so that the elements can be easily inspected.

>>> list(range(5, 8))
[5, 6, 7]

If only one argument is given, it is interpreted as one beyond the last value for a range that
starts at 0.

>>> list(range(4))
[0, 1, 2, 3]

Ranges commonly appear as the expression in a for header to specify the number of
times that the suite should be executed: A common convention is to use a single
underscore character for the name in the for header if the name is unused in the suite:



>>> for  in range(3):
print('Go Bears!')

Go Bears!
Go Bears!
Go Bears!

This underscore is just another name in the environment as far as the interpreter is
concerned, but has a conventional meaning among programmers that indicates the name
will not appear in any future expressions.

2.3.3 Sequence Processing

Sequences are such a common form of compound data that whole programs are often
organized around this single abstraction. Modular components that have sequences as
both inputs and outputs can be mixed and matched to perform data processing. Complex
components can be defined by chaining together a pipeline of sequence processing
operations, each of which is simple and focused.

List Comprehensions. Many sequence processing operations can be expressed by
evaluating a fixed expression for each element in a sequence and collecting the resulting
values in a result sequence. In Python, a list comprehension is an expression that performs
such a computation.

>>> odds = [1, 3, 5, 7, 9]
>>> [x+1 for x in odds]
[2, 4, 6, 8, 10]

The for keyword above is not part of a for statement, but instead part of a list
comprehension because it is contained within square brackets. The sub-expression x+1 is
evaluated with x bound to each element of odds in turn, and the resulting values are
collected into a list.

Another common sequence processing operation is to select a subset of values that satisfy
some condition. List comprehensions can also express this pattern, for instance selecting
all elements of odds that evenly divide 2s.

oe

>>> [x for x in odds if 25
(1, 51

x == 0]

The general form of a list comprehension is:

[<map expression> for <name> in <sequence expression> if <filter expression>]

To evaluate a list comprehension, Python evaluates the <sequence expression>, which
must return an iterable value. Then, for each element in order, the element value is bound
to <name>, the filter expression is evaluated, and if it yields a true value, the map expression
is evaluated. The values of the map expression are collected into a list.

Aggregation. A third common pattern in sequence processing is to aggregate all values in a
sequence into a single value. The built-in functions sum, min, and max are all examples of



aggregation functions.

By combining the patterns of evaluating an expression for each element, selecting a subset
of elements, and aggregating elements, we can solve problems using a sequence
processing approach.

A perfect number is a positive integer that is equal to the sum of its divisors. The divisors of
n are positive integers less than n that divide evenly into n. Listing the divisors of n can be
expressed with a list comprehension.

>>> def divisors(n):
return [1] + [x for x in range(2, n) if n & x == 0]

>>> divisors(4)
(1, 2]

>>> divisors(12)
(1, 2, 3, 4, 6]

Using divisors, we can compute all perfect numbers from 1 to 1000 with another list
comprehension. (1 is typically considered to be a perfect number as well, but it does not
qualify under our definition of divisors.)

>>> [n for n in range(l, 1000) if sum(divisors(n)) == n]
[6, 28, 496]

We can reuse our definition of divisors to solve another problem, finding the minimum
perimeter of a rectangle with integer side lengths, given its area. The area of a rectangle is
its height times its width. Therefore, given the area and height, we can compute the width.
We can assert that both the width and height evenly divide the area to ensure that the side
lengths are integers.

>>> def width(area, height):
assert area % height ==
return area // height

The perimeter of a rectangle is the sum of its side lengths.

>>> def perimeter(width, height):
return 2 * width + 2 * height

The height of a rectangle with integer side lengths must be a divisor of its area. We can
compute the minimum perimeter by considering all heights.

>>> def minimum perimeter(area):
heights = divisors(area)
perimeters = [perimeter(width(area, h), h) for h in heights]
return min(perimeters)

>>> area = 80

>>> width(area, 5)
16

>>> perimeter (16, 5)



42

>>> perimeter (10, 8)

36

>>> minimum perimeter(area)

36

>>> [minimum perimeter(n) for n in range(l, 10)]
(4, 6, 8, 8, 12, 10, 16, 12, 12]

Higher-Order Functions. The common patterns we have observed in sequence processing
can be expressed using higher-order functions. First, evaluating an expression for each
element in a sequence can be expressed by applying a function to each element.

>>> def apply to all(map fn, s):
return [map fn(x) for x in s]

Selecting only elements for which some expression is true can be expressed by applying a
function to each element.

>>> def keep if(filter fn, s):
return [x for x in s if filter fn(x)]

Finally, many forms of aggregation can be expressed as repeatedly applying a two-
argument function to the reduced value so far and each element in turn.

>>> def reduce(reduce fn, s, initial):
reduced = initial
for x in s:
reduced = reduce_fn(reduced, Xx)
return reduced

For example, reduce can be used to multiply together all elements of a sequence. Using
mul as the reduce fn and 1 as the initial value, reduce can be used to multiply together a
sequence of numbers.

>>> reduce(mul, [2, 4, 8], 1)
64

We can find perfect numbers using these higher-order functions as well.

>>> def divisors of(n):
divides n = lambda x: n % x == 0
return [1] + keep if(divides n, range(2, n))

>>> divisors_of(12)
(1, 2, 3, 4, 6]
>>> from operator import add
>>> def sum of divisors(n):
return reduce(add, divisors_of(n), 0)

>>> def perfect(n):
return sum of divisors(n) == n

>>> keep if(perfect, range(l, 1000))



[1, 6, 28, 496]

Conventional Names. In the computer science community, the more common name for
apply to_all iS map and the more common name for kxeep if is filter. In Python, the built-
in map and filter are generalizations of these functions that do not return lists. These
functions are discussed in Chapter 4. The definitions above are equivalent to applying the
list constructor to the result of built-in map and fiiter calls.

>>> apply to_all = lambda map fn, s: list(map(map_fn, s))
>>> keep if = lambda filter fn, s: list(filter(filter fn, s))

The reduce function is built into the functools module of the Python standard library. In this
version, the initial argument is optional.

>>> from functools import reduce
>>> from operator import mul
>>> def product(s):

return reduce(mul, s)

>>> product([1l, 2, 3, 4, 5])
120

In Python programs, it is more common to use list comprehensions directly rather than
higher-order functions, but both approaches to sequence processing are widely used.

2.3.4 Sequence Abstraction

We have introduced two native data types that satisfy the sequence abstraction: lists and
ranges. Both satisfy the conditions with which we began this section: length and element
selection. Python includes two more behaviors of sequence types that extend the
sequence abstraction.

Membership. A value can be tested for membership in a sequence. Python has two
operators in and not in that evaluate to True or ralse depending on whether an element
appears in a sequence.

>>> digits

[, 8, 2, 8]

>>> 2 in digits

True

>>> 1828 not in digits
True

Slicing. Sequences contain smaller sequences within them. A slice of a sequence is any
contiguous span of the original sequence, designated by a pair of integers. As with the
range constructor, the first integer indicates the starting index of the slice and the second
indicates one beyond the ending index.

In Python, sequence slicing is expressed similarly to element selection, using square
brackets. A colon separates the starting and ending indices. Any bound that is omitted is



assumed to be an extreme value: 0 for the starting index, and the length of the sequence
for the ending index.

>>> digits[0:2]
(1, 8]

>>> digits[1l:]
(8, 2, 8]

Enumerating these additional behaviors of the Python sequence abstraction gives us an
opportunity to reflect upon what constitutes a useful data abstraction in general. The
richness of an abstraction (that is, how many behaviors it includes) has consequences. For
users of an abstraction, additional behaviors can be helpful. On the other hand, satisfying
the requirements of a rich abstraction with a new data type can be challenging. Another
negative consequence of rich abstractions is that they take longer for users to learn.

Sequences have a rich abstraction because they are so ubiquitous in computing that
learning a few complex behaviors is justified. In general, most user-defined abstractions
should be kept as simple as possible.

Further reading. Slice notation admits a variety of special cases, such as negative starting
values, ending values, and step sizes. A complete description appears in the subsection
called slicing a list in Dive Into Python 3. In this chapter, we will only use the basic features
described above.

2.3.5 Strings

Text values are perhaps more fundamental to computer science than even numbers. As a
case in point, Python programs are written and stored as text. The native data type for text
in Python is called a string, and corresponds to the constructor str.

There are many details of how strings are represented, expressed, and manipulated in
Python. Strings are another example of a rich abstraction, one that requires a substantial
commitment on the part of the programmer to master. This section serves as a condensed
introduction to essential string behaviors.

String literals can express arbitrary text, surrounded by either single or double quotation
marks.

>>> 'T am string!'

'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> EF

HggF
We have seen strings already in our code, as docstrings, in calls to print, and as error
messages in assert statements.

Strings satisfy the two basic conditions of a sequence that we introduced at the beginning
of this section: they have a length and they support element selection.
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>>> city = 'Berkeley'
>>> len(city)

8

>>> city[3]

'k

The elements of a string are themselves strings that have only a single character. A
character is any single letter of the alphabet, punctuation mark, or other symbol. Unlike
many other programming languages, Python does not have a separate character type; any
text is a string, and strings that represent single characters have a length of 1.

Like lists, strings can also be combined via addition and multiplication.

>>> 'Berkeley' + ', CA'
'Berkeley, CA'

>>> 'Shabu ' * 2

'Shabu Shabu '

Membership. The behavior of strings diverges from other sequence types in Python. The
string abstraction does not conform to the full sequence abstraction that we described for
lists and ranges. In particular, the membership operator in applies to strings, but has an
entirely different behavior than when it is applied to sequences. It matches substrings
rather than elements.

>>> 'here' in "Where's Waldo?"
True

Multiline Literals. Strings aren't limited to a single line. Triple quotes delimit string literals
that span multiple lines. We have used this triple quoting extensively already for docstrings.

>>> """The Zen of Python

claims, Readability counts.

Read more: import this."""

'The Zen of Python\nclaims, "Readability counts."\nRead more: import this.'

In the printed result above, the \n (pronounced "backslash en") is a single element that
represents a new line. Although it appears as two characters (backslash and "n"), it is
considered a single character for the purposes of length and element selection.

String Coercion. A string can be created from any object in Python by calling the str
constructor function with an object value as its argument. This feature of strings is useful
for constructing descriptive strings from objects of various types.

>>> str(2) + ' is an element of ' + str(digits)
'2 is an element of [1, 8, 2, 8]'

Further reading. Encoding text in computers is a complex topic. In this chapter, we will
abstract away the details of how strings are represented. However, for many applications,
the particular details of how strings are encoded by computers is essential knowledge. The
strings chapter of Dive Into Python 3 provides a description of character encodings and
Unicode.
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2.3.6 Trees

Our ability to use lists as the elements of other lists provides a new means of combination
in our programming language. This ability is called a closure property of a data type. In
general, a method for combining data values has a closure property if the result of
combination can itself be combined using the same method. Closure is the key to power in
any means of combination because it permits us to create hierarchical structures —
structures made up of parts, which themselves are made up of parts, and so on.

We can visualize lists in environment diagrams using box-and-pointer notation. A list is
depicted as adjacent boxes that contain the elements of the list. Primitive values such as
numbers, strings, boolean values, and None appear within an element box. Composite
values, such as function values and other lists, are indicated by an arrow.

one_two =[1, 2] nested = [[1, 2], [], [[3, False, None], [4, lambda: 5]]]

Nesting lists within lists can introduce complexity. The tree is a fundamental data
abstraction that imposes regularity on how hierarchical values are structured and
manipulated.

A tree has a root label and a sequence of branches. Each branch of a tree is a tree. A tree
with no branches is called a leaf. Any tree contained within a tree is called a sub-tree of
that tree (such as a branch of a branch). The root of each sub-tree of a tree is called a node
in that tree.

The data abstraction for a tree consists of the constructor tree and the selectors 1abel and
branches. We begin with a simplified version.

>>> def tree(root_label, branches=[]):
for branch in branches:
assert is_tree(branch), 'branches must be trees'
return [root label] + list(branches)

>>> def label(tree):
return tree[0]

>>> def branches(tree):
return tree[l:]

A tree is well-formed only if it has a root label and all branches are also trees. The is_tree
function is applied in the tree constructor to verify that all branches are well-formed.

>>> def is tree(tree):
if type(tree) != list or len(tree) < 1l:
return False
for branch in branches(tree):
if not is_ tree(branch):
return False
return True

The is_1eaf function checks whether or not a tree has branches.



>>> def is_leaf(tree):
return not branches(tree)

Trees can be constructed by nested expressions. The following tree t has root label 3 and
two branches.

>>> t = tree(3, [tree(l), tree(2, [tree(l), tree(l)])])
>>> t

(3, (11, 12, [11, [11]]

>>> label(t)

3

>>> branches(t)

(r11, 12, 111, 11111

>>> label (branches(t)[1])

2

>>> is leaf(t)

False

>>> is leaf(branches(t)[0])
True

Tree-recursive functions can be used to construct trees. For example, the nth Fibonacci
tree has a root label of the nth Fibonacci number and, for n > 1, two branches that are also
Fibonacci trees. A Fibonacci tree illustrates the tree-recursive computation of a Fibonacci
number.

>>> def fib_ tree(n):
if n == 0 or n ==
return tree(n)
else:
left, right = fib tree(n-2), fib tree(n-1)
fib n = label(left) + label(right)
return tree(fib n, [left, right])
>>> fib tree(5)
(5, t2, i1, 1, (o3, 1111, 3, 11, 01, 111, 2, 11, (1, (0], [11111]

Tree-recursive functions are also used to process trees. For example, the count 1leaves
function counts the leaves of a tree.

>>> def count leaves(tree):
if is leaf(tree):
return 1
else:
branch counts = [count leaves(b) for b in branches(tree)]
return sum(branch counts)
>>> count leaves(fib_tree(5))
8

Partition trees. Trees can also be used to represent the partitions of an integer. A partition
tree for n using parts up to size m is a binary (two branch) tree that represents the choices
taken during computation. In a non-leaf partition tree:

e the left (index 0) branch contains all ways of partitioning n using at least one m,
e the right (index 1) branch contains partitions using parts up to m-1, and



e the root label is m.

The labels at the leaves of a partition tree express whether the path from the root of the
tree to the leaf represents a successful partition of n.

>>> def partition tree(n, m):
"""Return a partition tree of n using parts of up to m."""

if n ==

return tree(True)
elif n < 0 or m ==

return tree(False)
else:

left = partition tree(n-m, m)

right = partition tree(n, m-1)

return tree(m, [left, right])

>>> partition tree(2, 2)
[2, [True], [1l, [1l, [True], [False]], [False]]]

Printing the partitions from a partition tree is another tree-recursive process that traverses
the tree, constructing each partition as a list. Whenever a true leaf is reached, the partition
is printed.

>>> def print parts(tree, partition=[]):
if is leaf(tree):
if label(tree):
print(' + '.Jjoin(partition))
else:
left, right = branches(tree)
m = str(label(tree))
print parts(left, partition + [m])
print parts(right, partition)

>>> print parts(partition tree(6, 4))
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Slicing can be used on the branches of a tree as well. For example, we may want to place
a restriction on the number of branches in a tree. A binarized tree has at most two
branches. A common tree transformation called binarization finds a binarized tree with the
same labels as an original tree by grouping together branches.

>>> def right binarize(t):
"""Construct a right-branching binary tree.
return tree(label(t), binarize branches(branches(t)))

mwomon

>>> def binarize branches(bs):



"womon mwoon

Binarize a list of branches.
if len(bs) > 2:
first, rest = bs[0], bs[1l:]
return [right binarize(first), binarize branches(rest) ]
else:
return [right binarize(b) for b in bs]

>>> right binarize(tree(0, [tree(x) for x in [1, 2, 3, 4, 5, 6, 711))
[0, (11, (021, [[31, [[41, [[5), [[61, [71111111

2.3.7 Linked Lists

So far, we have used only native types to represent sequences. However, we can also
develop sequence representations that are not built into Python. A common representation
of a sequence constructed from nested pairs is called a linked list. The environment
diagram below illustrates the linked list representation of a four-element sequence
containing 1, 2, 3, and 4.

four =1, [2, [3, [4, 'empty']]]]

A linked list is a pair containing the first element of the sequence (in this case 1) and the
rest of the sequence (in this case a representation of 2, 3, 4). The second element is also a
linked list. The rest of the inner-most linked list containing only 4 is 'empty', a value that
represents an empty linked list.

Linked lists have recursive structure: the rest of a linked list is a linked list or 'empty'. We
can define an abstract data representation to validate, construct, and select the
components of linked lists.

>>> empty = 'empty'

>>> def is_link(s):
"""s is a linked list if it is empty or a (first, rest) pair.
return s == empty or (len(s) == 2 and is_link(s[1l]))

womnon

>>> def link(first, rest):
"""Construct a linked list from its first element and the rest."""

assert is link(rest), "rest must be a linked list."
return [first, rest]

>>> def first(s):

"""Return the first element of a linked list s."""
assert is link(s), "first only applies to linked lists."
assert s != empty, "empty linked list has no first element."

return s[0]

>>> def rest(s):
"""Return the rest of the elements of a linked list s.
assert is_link(s), "rest only applies to linked lists."
assert s != empty, "empty linked list has no rest."
return s[1]

womn

Above, 1ink is a constructor and first and rest are selectors for an abstract data



representation of linked lists. The behavior condition for a linked list is that, like a pair, its
constructor and selectors are inverse functions.

e |f a linked list s was constructed from first element £ and linked list r, then first(s)
returns £, and rest(s) returns r.

We can use the constructor and selectors to manipulate linked lists.

>>> four = link(1l, 1link(2, 1link(3, link(4, empty))))
>>> first(four)

1

>>> rest(four)

[2, [3, [4, 'empty']]]

Our implementation of this kind of abstract data uses pairs that are two-element 1ist
values. It is worth noting that we were also able to implement pairs using functions, and we
can implement linked lists using any pairs, therefore we could implement linked lists using
functions alone.

The linked list can store a sequence of values in order, but we have not yet shown that it
satisfies the sequence abstraction. Using the abstract data representation we have
defined, we can implement the two behaviors that characterize a sequence: length and
element selection.

>>> def len link(s):
"""Return the length of linked list s."""
length = 0
while s != empty:
s, length = rest(s), length + 1
return length

>>> def getitem link(s, i):
"""Return the element at index i of linked list s.
while i > 0:
s, 1 = rest(s), i -1
return first(s)

mwomon

Now, we can manipulate a linked list as a sequence using these functions. (We cannot yet
use the built-in 1en function, element selection syntax, or for statement, but we will soon.)

>>> len_link(four)

4

>>> getitem link(four, 1)
2

The series of environment diagrams below illustrate the iterative process by which
getitem link finds the element 2 at index 1 in a linked list. Below, we have defined the
linked list four using Python primitives to simplify the diagrams. This implementation
choice violates an abstraction barrier, but allows us to inspect the computational process
more easily for this example.

def first(s): return s[0] def rest(s): return s[1] def getitem_link(s, i): while i > 0: s, i = rest(s), i -
1 return first(s) four = [1, [2, [3, [4, 'empty']]]] getitem_link(four, 1)



First, the function getitem 1ink is called, creating a local frame.

def first(s): return s[0] def rest(s): return s[1] def getitem_link(s, i): while i > 0: s, i = rest(s), i -
1 return first(s) four = [1, [2, [3, [4, 'empty']]]] getitem_link(four, 1)

The expression in the while header evaluates to true, which causes the assignment
statement in the while suite to be executed. The function rest returns the sublist starting
with 2.

def first(s): return s[0] def rest(s): return s[1] def getitem_link(s, i): while i > O: s, i = rest(s), i -
1 return first(s) four = [1, [2, [3, [4, 'empty']]]] getitem_link(four, 1)

Next, the local name s will be updated to refer to the sub-list that begins with the second
element of the original list. Evaluating the while header expression now yields a false value,
and so Python evaluates the expression in the return statement on the final line of

getitem link.

def first(s): return s[0] def rest(s): return s[1] def getitem_link(s, i): while i > O: s, i = rest(s), i -
1 return first(s) four = [1, [2, [3, [4, 'empty']]]] getitem_link(four, 1)

This final environment diagram shows the local frame for the call to first, which contains
the name s bound to that same sub-list. The first function selects the value 2 and returns
it, which will also be returned from getitem 1link.

This example demonstrates a common pattern of computation with linked lists, where each
step in an iteration operates on an increasingly shorter suffix of the original list. This
incremental processing to find the length and elements of a linked list does take some time
to compute. Python's built-in sequence types are implemented in a different way that does
not have a large cost for computing the length of a sequence or retrieving its elements. The
details of that representation are beyond the scope of this text.

Recursive manipulation. Both 1en_1ink and getitem link are iterative. They peel away
each layer of nested pair until the end of the list (in 1en_1ink) or the desired element (in
getitem 1link) is reached. We can also implement length and element selection using
recursion.

>>> def len link recursive(s):
"""Return the length of a linked list s."""
if s == empty:
return 0
return 1 + len link recursive(rest(s))

>>> def getitem link recursive(s, 1i):
"""Return the element at index i of linked list s."""
if i ==
return first(s)
return getitem link recursive(rest(s), i - 1)

>>> len link recursive(four)

4

>>> getitem link recursive(four, 1)
2



These recursive implementations follow the chain of pairs until the end of the list (in
len_link recursive) Or the desired element (in getitem link recursive) is reached.

Recursion is also useful for transforming and combining linked lists.

>>> def extend link(s, t):
"""Return a list with the elements of s followed by those of t.

assert is link(s) and is_link(t)
if s == empty:
return t

else:
return link(first(s), extend link(rest(s), t))

won

>>> extend link(four, four)
(1, [2, [3, [4, [1, [2, [3, [4, 'empty']1]11111]

>>> def apply to_all link(f, s):
"""Apply f to each element of s.
assert is_link(s)
if s == empty:

return s

else:
return link(f(first(s)), apply to_all link(f, rest(s)))

mwaon

>>> apply to all link(lambda x: x*x, four)
[1, [4, [9, [l6, 'empty']1]1]]

>>> def keep if link(f, s):
"""Return a list with elements of s for which f(e) is true."""
assert is_ link(s)
if s == empty:
return s
else:
kept = keep if link(f, rest(s))
if f(first(s)):
return link(first(s), kept)
else:
return kept

>>> keep_if link(lambda x: x%2 == 0, four)
[2, [4, "empty']]

>>> def join link(s, separator):
"""Return a string of all elements in s separated by separator.

"woon

if s == empty:
return ""
elif rest(s) == empty:
return str(first(s))
else:

return str(first(s)) + separator + join link(rest(s), separator)

>>> join_link(four, ", ")
1, 2, 3, 4'

Recursive Construction. Linked lists are particularly useful when constructing sequences



incrementally, a situation that arises often in recursive computations.

The count_partitions function from Chapter 1 counted the number of ways to partition an
integer n using parts up to size m via a tree-recursive process. With sequences, we can also
enumerate these partitions explicitly using a similar process.

We follow the same recursive analysis of the problem as we did while counting: partitioning
n using integers up to m involves either

1. partitioning n-m using integers up to m, or
2. partitioning n using integers up to m-1.

For base cases, we find that 0 has an empty partition, while partitioning a negative integer
or using parts smaller than 1 is impossible.

>>> def partitions(n, m):
"""Return a linked list of partitions of n using parts of up to m.
Each partition is represented as a linked list.
if n ==
return link(empty, empty) # A list containing the empty partition
elif n < 0 or m ==
return empty
else:
using m = partitions(n-m, m)
with m = apply to all link(lambda s: link(m, s), using m)
without m = partitions(n, m-1)
return extend_link(with_m, without m)

In the recursive case, we construct two sublists of partitions. The first uses m, and so we
prepend m to each element of the result using m to form with_m.

The result of partitions is highly nested: a linked list of linked lists, and each linked list is
represented as nested pairs that are 1ist values. Using join_1link with appropriate
separators, we can display the partitions in a human-readable manner.

>>> def print partitions(n, m):
lists = partitions(n, m)
strings = apply to_all link(lambda s: join link(s, " + "), lists)
print(join link(strings, "\n"))

>>> print partitions(6, 4)
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Continue: 2.4 Mutable Data
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2.4 Mutable Data

We have seen how abstraction is vital in helping us to cope with the complexity of large
systems. Effective programming also requires organizational principles that can guide us in
formulating the overall design of a program. In particular, we need strategies to help us
structure large systems to be modular, meaning that they divide naturally into coherent
parts that can be separately developed and maintained.

One powerful technique for creating modular programs is to incorporate data that may
change state over time. In this way, a single data object can represent something that
evolves independently of the rest of the program. The behavior of a changing object may
be influenced by its history, just like an entity in the world. Adding state to data is a central
ingredient of a paradigm called object-oriented programming.

2.4.1 The Object Metaphor

In the beginning of this text, we distinguished between functions and data: functions
performed operations and data were operated upon. When we included function values
among our data, we acknowledged that data too can have behavior. Functions could be
manipulated as data, but could also be called to perform computation.

Objects combine data values with behavior. Objects represent information, but also behave
like the things that they represent. The logic of how an object interacts with other objects is
bundled along with the information that encodes the object's value. When an object is
printed, it knows how to spell itself out in text. If an object is composed of parts, it knows
how to reveal those parts on demand. Objects are both information and processes,
bundled together to represent the properties, interactions, and behaviors of complex
things.

Object behavior is implemented in Python through specialized object syntax and
associated terminology, which we can introduce by example. A date is a kind of object.

>>> from datetime import date

The name date is bound to a class. As we have seen, a class represents a kind of value.
Individual dates are called instances of that class. Instances can be constructed by calling
the class on arguments that characterize the instance.

>>> tues = date(2014, 5, 13)

While tues was constructed from primitive numbers, it behaves like a date. For instance,
subtracting it from another date will give a time difference, which we can print.

>>> print(date(2014, 5, 19) - tues)
6 days, 0:00:00

Objects have attributes, which are named values that are part of the object. In Python, like
many other programming languages, we use dot notation to designate an attribute of an



object.
<expression> . <name>

Above, the <expression> evaluates to an object, and <name> is the name of an attribute for
that object.

Unlike the names that we have considered so far, these attribute names are not available in
the general environment. Instead, attribute names are particular to the object instance
preceding the dot.

>>> tues.year
2014

Objects also have methods, which are function-valued attributes. Metaphorically, we say
that the object "knows" how to carry out those methods. By implementation, methods are
functions that compute their results from both their arguments and their object. For
example, The strftime method (a classic function name meant to evoke "string format of
time") of tues takes a single argument that specifies how to display a date (e.g., sa means
that the day of the week should be spelled out in full).

>>> tues.strftime('%A, %B &d'")
'Tuesday, May 13"

Computing the return value of strftime requires two inputs: the string that describes the
format of the output and the date information bundled into tues. Date-specific logic is
applied within this method to yield this result. We never stated that the 13th of May, 2014,
was a Tuesday, but knowing the corresponding weekday is part of what it means to be a
date. By bundling behavior and information together, this Python object offers us a
convincing, self-contained abstraction of a date.

Dates are objects, but numbers, strings, lists, and ranges are all objects as well. They
represent values, but also behave in a manner that befits the values they represent. They
also have attributes and methods. For instance, strings have an array of methods that
facilitate text processing.

>>> '1234'.isnumeric()

True

>>> 'rOBERT dE nIRO'.swapcase()
'Robert De Niro'

>>> 'eyes'.upper().endswith('YES")
True

In fact, all values in Python are objects. That is, all values have behavior and attributes.
They act like the values they represent.

2.4.2 Sequence Objects

Instances of primitive built-in values such as numbers are immutable. The values
themselves cannot change over the course of program execution. Lists on the other hand



are mutable.

Mutable objects are used to represent values that change over time. A person is the same
person from one day to the next, despite having aged, received a haircut, or otherwise
changed in some way. Similarly, an object may have changing properties due to mutating
operations. For example, it is possible to change the contents of a list. Most changes are
performed by invoking methods on list objects.

We can introduce many list modification operations through an example that illustrates the
history of playing cards (drastically simplified). Comments in the examples describe the
effect of each method invocation.

Playing cards were invented in China, perhaps around the 9th century. An early deck had
three suits, which corresponded to denominations of money.

>>> chinese = ['coin', 'string', 'myriad'] # A list literal
>>> suits = chinese # Two names refer to the same list

As cards migrated to Europe (perhaps through Egypt), only the suit of coins remained in
Spanish decks (oro).

>>> suits.pop() # Remove and return the final element
'myriad’
>>> suits.remove('string') # Remove the first element that equals the argument

Three more suits were added (they evolved in name and design over time),

>>> suits.append('cup') # Add an element to the end
>>> suits.extend(['sword', 'club']) # Add all elements of a sequence to the end

and ltalians called swords spades.

>>> suits[2] = 'spade' # Replace an element

giving the suits of a traditional Italian deck of cards.

>>> suits
['coin', 'cup', 'spade', 'club']

The French variant used today in the U.S. changes the first two suits:

>>> suits[0:2] = ['heart', 'diamond'] # Replace a slice
>>> suits
[ 'heart', 'diamond', 'spade', 'club']

Methods also exist for inserting, sorting, and reversing lists. All of these mutation
operations change the value of the list; they do not create new list objects.

Sharing and Identity. Because we have been changing a single list rather than creating new
lists, the object bound to the name chinese has also changed, because it is the same list
object that was bound to suits!



>>> chinese # This name co-refers with "suits" to the same changing list
[ '"heart', 'diamond', 'spade', 'club']

This behavior is new. Previously, if a name did not appear in a statement, then its value
would not be affected by that statement. With mutable data, methods called on one name
can affect another name at the same time.

The environment diagram for this example shows how the value bound 10 chinese is
changed by statements involving only suits. Step through each line of the following
example to observe these changes.

chinese = ['coin’, 'string', 'myriad'] suits = chinese suits.pop() suits.remove('string')
suits.append('cup') suits.extend(['sword', ‘club']) suits[2] = 'spade’ suits[0:2] = ['heart’,
‘diamond']

Lists can be copied using the 1ist constructor function. Changes to one list do not affect
another, unless they share structure.

>>> nest = list(suits) # Bind "nest" to a second list with the same elements
>>> nest[0] = suits # Create a nested list

According to this environment, changing the list referenced by suits will affect the nested
list that is the first element of nest, but not the other elements.

>>> suits.insert(2, 'Joker') # Insert an element at index 2, shifting the rest
>>> nest
[[ 'heart', 'diamond', 'Joker', 'spade', 'club'], 'diamond', 'spade', 'club']

And likewise, undoing this change in the first element of nest will change suit as well.

>>> nest[0].pop(2)

'Joker’

>>> suits

[ 'heart', 'diamond', 'spade', 'club']

Stepping through this example line by line will show the representation of a nested list.

suits = ['heart’, 'diamond’, 'spade’, 'club'] nest = list(suits) nest[0] = suits suits.insert(2,
‘Joker') joke = nest[0].pop(2)

Because two lists may have the same contents but in fact be different lists, we require a
means to test whether two objects are the same. Python includes two comparison
operators, called is and is not, that test whether two expressions in fact evaluate to the
identical object. Two objects are identical if they are equal in their current value, and any
change to one will always be reflected in the other. Identity is a stronger condition than
equality.

>>> suits is nest[0]

True

>>> suits is [ 'heart', 'diamond', 'spade', 'club']
False

>>> suits == [ 'heart', 'diamond', 'spade', 'club']



True

The final two comparisons illustrate the difference between is and ==. The former checks
for identity, while the latter checks for the equality of contents.

List Manipulation. The behavior of list functions and methods can best be understood in
terms of object mutation and identity. Lists have a large number of built-in methods that
are useful in many scenarios, and so learning their behavior is useful for programming
productivity.

Slicing a list creates a new list and leaves the original list unchanged. A slice from the
beginning to the end of the list is one way to copy the contents of a list.

a=[11,12,13] b =a[1:] b[1] = 15

Although the list is copied, the values contained within the list are not. Instead, a new list is
constructed that contains a subset of the same values as the sliced list. Therefore,
mutating a list within a sliced list will affect the original list.

a=[11,[12,13], 14] b = a[:] b[1][1] = 15

The built-in 1ist function creates a new list that contains the values of its argument, which
must be an iterable value such as a sequence. Again, the values placed in this list are not
copied. 1ist(s) and s[:] are equivalent for a list s.

Adding two lists together creates a new list that contains the values of the first list, followed
by the values in the second list. Therefore, a+b and b+a can result in different values for two
lists a and b. However, the += operator behaves differently for lists, and its behavior is
described below along with the extend method.

a=[[11],12]b=[13,14]c=a+bd=b +aa[0][0] = 15 b[0] = 16

The append method of a list takes one value as an argument and adds it to the end of the
list. The argument can be any value, such as a number or another list. If the argument is a
list, then that list (and not a copy) is added as an item in the list. The method always
returns None, and it mutates the list by increasing its length by one.

a=[1,[2,3]] b=[4, 5, 6]] c =7 a.append(b) a.append(c) b.append(c) d = a.append(a)

The extend method of a list takes an iterable value as an argument and adds each of its
elements to the end of the list. It mutates the list by increasing its length by the length of
the iterable argument. The statement x += y for a list x and iterable y is equivalent to
x.extend(y), aside from some obscure and minor differences beyond the scope of this
text. Passing any argument to extend that is not iterable will cause a TypeError. The
method does not return anything, and it mutates the list.

a=[1,2]b=[1,2]c=[1, 2] d=[3, [4]] a.extend(d) b += d c.append(d)

The pop method removes and returns the last element of the list. When given an integer
argument i, it removes and returns the element at index i of the list. This method mutates
the list, reducing its length by one. Attempting to pop from an empty list causes an

IndexError.

a=[0,1,[2, 3], 4] b=a.pop(2) c = a.pop)



The remove method takes one argument that must be equal to a value in the list. It removes
the first item in the list that is equal to its argument. Calling remove on a value that is not
equal to any item in the list causes a valueError.

a=[10, 11, 10, 12, [13, 14]] a.remove([13, 14]) a.remove(10)

The index method takes one argument that must be equal to a value in the list. It returns
the index in the list of the first item that is equal to the argument. Calling index On a value
that is not equal to any item in the list causes a valueError.

>>> a = [13, 14, 13, 12, [13, 1471, 15]
>>> a.index([13, 14])

4

>>> a.index(13)

0

The insert method takes two arguments: an index and a value to be inserted. The value is
added to the list at the given index. All elements before the given index stay the same, but
all elements after the index have their indices increased by one. This method mutates the
list by increasing its size by one, then returns None.

a=[0, 1, 2] a.insert(0, [3, 4]) a.insert(2, 5) a.insert(5, 6)

The count method of a list takes in an item as an argument and returns how many times an
equal item apears in the list. If the argument is not equal to any element of the list, then
count returns 0.

>>>a = [1, [2, 31, 1, [4, 5]]
>>> a.count([2, 31])

1

>>> a.count(1l)

2

>>> a.count(5)

0

List comprehensions. A list comprehension always creates a new list. For example, the
unicodedata module tracks the official names of every character in the Unicode alphabet.
We can look up the characters corresponding to names, including those for card suits.

>>> from unicodedata import lookup
>>> [lookup( 'WHITE ' + s.upper() + ' SUIT') for s in suits]

['O.I '<>‘I ‘Q'I '®.]

This resulting list does not share any of its contents with suits, and evaluating the list
comprehension does not modify the suits list.

You can read more about the Unicode standard for representing text in the Unicode
section of Dive into Python 3.

Tuples. A tuple, an instance of the built-in tuple type, is an immutable sequence. Tuples
are created using a tuple literal that separates element expressions by commas.
Parentheses are optional but used commonly in practice. Any objects can be placed within
tuples.
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>>> 1, 2 + 3

(1, 5)

>>> ("the", 1, ("and", "only"))
('the', 1, ('and', 'only'))

>>> type( (10, 20) )

<class 'tuple'>

Empty and one-element tuples have special literal syntax.

>>> () # 0 elements

()

>>> (10,) # 1 element
(10,)

Like lists, tuples have a finite length and support element selection. They also have a few
methods that are also available for lists, such as count and index.

>>> code = ("up", "up", "down", "down") + ("left", "right") * 2
>>> len(code)

8

>>> code[3]

"down'

>>> code.count("down")

2

>>> code.index("left")

4

However, the methods for manipulating the contents of a list are not available for tuples
because tuples are immutable.

While it is not possible to change which elements are in a tuple, it is possible to change the
value of a mutable element contained within a tuple.

nest = (10, 20, [30, 40]) nest[2].pop()

Tuples are used implicitly in multiple assignment. An assignment of two values to two
names creates a two-element tuple and then unpacks it.

attention to

2.4.3 Dictionaries

Dictionaries are Python's built-in data type for storing and manipulating correspondence
relationships. A dictionary contains key-value pairs, where both the keys and values are
objects. The purpose of a dictionary is to provide an abstraction for storing and retrieving
values that are indexed not by consecutive integers, but by descriptive keys.

Strings commonly serve as keys, because strings are our conventional representation for
names of things. This dictionary literal gives the values of various Roman numerals.

>>> numerals = {'I': 1.0, 'Vv': 5, 'X': 10}



Looking up values by their keys uses the element selection operator that we previously
applied to sequences.

>>> numerals[ 'X']
10

A dictionary can have at most one value for each key. Adding new key-value pairs and
changing the existing value for a key can both be achieved with assignment statements.

1
50

>>> numerals['I']
>>> numerals['L']
>>> numerals

{'t': 1, 'X': 10, 'L': 50, 'V': 5}

Notice that '.* was not added to the end of the output above. Dictionaries were unordered
collections of key-value pairs until Python 3.6. Since Python 3.6, their contents will be
ordered by insertion. Since dictionaries were historically unordered collections, it is safest
not to assume anything about the order in which keys and values will be printed.

Dictionaries can appear in environment diagrams as well.
numerals = {'l': 1, 'V": 5, 'X"': 10} numerals['L'] = 50

The dictionary type also supports various methods of iterating over the contents of the
dictionary as a whole. The methods keys, values, and items all return iterable values.

>>> sum(numerals.values())
66

A list of key-value pairs can be converted into a dictionary by calling the dict constructor
function.

>>> dict([(3, 9), (4, 16), (5, 25)1)
{3: 9, 4: 16, 5: 25}

Dictionaries do have some restrictions:

¢ A key of a dictionary cannot be or contain a mutable value.
e There can be at most one value for a given key.

This first restriction is tied to the underlying implementation of dictionaries in Python. The
details of this implementation are not a topic of this text. Intuitively, consider that the key
tells Python where to find that key-value pair in memory; if the key changes, the location of
the pair may be lost. Tuples are commonly used for keys in dictionaries because lists
cannot be used.

The second restriction is a consequence of the dictionary abstraction, which is designed to
store and retrieve values for keys. We can only retrieve the value for a key if at most one
such value exists in the dictionary.

A useful method implemented by dictionaries is get, which returns either the value for a
key, if the key is present, or a default value. The arguments to get are the key and the
default value.



>>> numerals.get('A', 0)
0
>>> numerals.get('V', 0)
5

Dictionaries also have a comprehension syntax analogous to those of lists. A key
expression and a value expression are separated by a colon. Evaluating a dictionary
comprehension creates a new dictionary object.

>>> {x: x*x for x in range(3,6)}
{3: 9, 4: 16, 5: 25}

2.4.4 Local State

Lists and dictionaries have local state: they are changing values that have some particular
contents at any point in the execution of a program. The word "state" implies an evolving
process in which that state may change.

Functions can also have local state. For instance, let us define a function that models the
process of withdrawing money from a bank account. We will create a function called
withdraw, Which takes as its argument an amount to be withdrawn. If there is enough
money in the account to accommodate the withdrawal, then withdraw will return the
balance remaining after the withdrawal. Otherwise, withdraw will return the message
'Insufficient funds'. For example, if we begin with $100 in the account, we would like to
obtain the following sequence of return values by calling withdraw:

>>> withdraw(25)

75

>>> withdraw(25)

50

>>> withdraw(60)
'Insufficient funds'
>>> withdraw(15)

35

Above, the expression withdraw(25), evaluated twice, yields different values. Thus, this
user-defined function is non-pure. Calling the function not only returns a value, but also
has the side effect of changing the function in some way, so that the next call with the
same argument will return a different result. This side effect is a result of withdraw making a
change to a name-value binding outside of the current frame.

For withdraw to make sense, it must be created with an initial account balance. The
function make_withdraw is a higher-order function that takes a starting balance as an
argument. The function withdraw is its return value.

>>> withdraw = make withdraw(100)

An implementation of make withdraw requires a new kind of statement: a nonlocal
statement. When we call make withdraw, we bind the name balance to the initial amount.



We then define and return a local function, withdraw, which updates and returns the value
of balance when called.

>>> def make withdraw(balance):
"""Return a withdraw function that draws down balance with each call."""
def withdraw(amount):
nonlocal balance # Declare the name "balance" nonlocal
if amount > balance:
return 'Insufficient funds'
balance = balance - amount # Re-bind the existing balance name
return balance
return withdraw

The nonlocal statement declares that whenever we change the binding of the name
balance, the binding is changed in the first frame in which balance is already bound. Recall
that without the nonlocal statement, an assignment statement would always bind a name
in the first frame of the current environment. The nonlocal statement indicates that the
name appears somewhere in the environment other than the first (local) frame or the last
(global) frame.

The following environment diagrams illustrate the effects of multiple calls to a function
created by make withdraw.

def make_withdraw(balance): def withdraw(amount): nonlocal balance if amount > balance:
return 'Insufficient funds' balance = balance - amount return balance return withdraw wd =
make_withdraw(20) wd(5) wd(3)

The first def statement has the usual effect: it creates a new user-defined function and
binds the name make withdraw to that function in the global frame. The subsequent call to
make withdraw creates and returns a locally defined function withdraw. The name balance is
bound in the parent frame of this function. Crucially, there will only be this single binding
for the name pbalance throughout the rest of this example.

Next, we evaluate an expression that calls this function, bound to the name wd, on an
amount 5. The body of withdraw is executed in a new environment that extends the
environment in which withdraw was defined. Tracing the effect of evaluating withdraw
illustrates the effect of a nonlocal statement in Python: a name outside of the first local
frame can be changed by an assignment statement.

def make_withdraw(balance): def withdraw(amount): nonlocal balance if amount > balance:
return 'Insufficient funds' balance = balance - amount return balance return withdraw wd =
make_withdraw(20) wd(5) wd(3)

The nonlocal statement changes all of the remaining assignment statements in the
definition of withdraw. After executing nonlocal balance, any assignment statement with
balance ONn the left-hand side of = will not bind balance in the first frame of the current
environment. Instead, it will find the first frame in which balance was already defined and
re-bind the name in that frame. If balance has not previously been bound to a value, then
the nonlocal statement will give an error.

By virtue of changing the binding for balance, we have changed the withdraw function as
well. The next time it is called, the name balance will evaluate to 15 instead of 20. Hence,



when we call withdraw a second time, we see that its return value is 12 and not 17. The
change to balance from the first call affects the result of the second call.

def make_withdraw(balance): def withdraw(amount): nonlocal balance if amount > balance:
return 'Insufficient funds' balance = balance - amount return balance return withdraw wd =
make_withdraw(20) wd(5) wd(3)

The second call to withdraw does create a second local frame, as usual. However, both
withdraw frames have the same parent. That is, they both extend the environment for
make withdraw, Which contains the binding for balance. Hence, they share that particular
name binding. Calling withdraw has the side effect of altering the environment that will be
extended by future calls to withdraw. The nonlocal statement allows withdraw to change a
name binding in the make withdraw frame.

Ever since we first encountered nested def statements, we have observed that a locally

defined function can look up names outside of its local frames. NO nonlocal statement is
required to access a non-local name. By contrast, only after a nonlocal statement can a

function change the binding of names in these frames.

By introducing nonlocal statements, we have created a dual role for assignment
statements. Either they change local bindings, or they change nonlocal bindings. In fact,
assignment statements already had a dual role: they either created new bindings or re-
bound existing names. Assignment can also change the contents of lists and dictionaries.
The many roles of Python assignment can obscure the effects of executing an assignment
statement. It is up to you as a programmer to document your code clearly so that the
effects of assignment can be understood by others.

Python Particulars. This pattern of non-local assignment is a general feature of
programming languages with higher-order functions and lexical scope. Most other
languages do not require a nonlocal statement at all. Instead, non-local assignment is
often the default behavior of assignment statements.

Python also has an unusual restriction regarding the lookup of hames: within the body of a
function, all instances of a name must refer to the same frame. As a result, Python cannot
look up the value of a name in a non-local frame, then bind that same name in the local
frame, because the same name would be accessed in two different frames in the same
function. This restriction allows Python to pre-compute which frame contains each name
before executing the body of a function. When this restriction is violated, a confusing error
message results. To demonstrate, the make withdraw example is repeated below with the
nonlocal statement removed.

def make_withdraw(balance): def withdraw(amount): if amount > balance: return
'Insufficient funds' balance = balance - amount return balance return withdraw wd =
make_withdraw(20) wd(5)

This unboundLocalError appears because balance is assigned locally in line 5, and so
Python assumes that all references t0 balance must appear in the local frame as well. This
error occurs before line 5 is ever executed, implying that Python has considered line 5 in
some way before executing line 3. As we study interpreter design, we will see that pre-
computing facts about a function body before executing it is quite common. In this case,



Python's pre-processing restricted the frame in which balance could appear, and thus
prevented the name from being found. Adding a nonlocal statement corrects this error.
The nonlocal statement did not exist in Python 2.

2.4.5 The Benefits of Non-Local Assignment

Non-local assignment is an important step on our path to viewing a program as a collection
of independent and autonomous objects, which interact with each other but each manage
their own internal state.

In particular, non-local assignment has given us the ability to maintain some state that is
local to a function, but evolves over successive calls to that function. The balance
associated with a particular withdraw function is shared among all calls to that function.
However, the binding for balance associated with an instance of withdraw is inaccessible
to the rest of the program. Only wd is associated with the frame for make_withdraw in which
it was defined. If make_withdraw is called again, then it will create a separate frame with a
separate binding for balance.

We can extend our example to illustrate this point. A second call 10 make withdraw returns a
second withdraw function that has a different parent. We bind this second function to the
name wdz in the global frame.

def make_withdraw(balance): def withdraw(amount): nonlocal balance if amount > balance:
return 'Insufficient funds' balance = balance - amount return balance return withdraw wd =
make_withdraw(20) wd2 = make_withdraw(7) wd2(6) wd(8)

Now, we see that there are in fact two bindings for the name balance in two different
frames, and each withdraw function has a different parent. The name wd is bound to a
function with a balance of 20, while wd2 is bound to a different function with a balance of 7.

Calling waz changes the binding of its non-local balance name, but does not affect the
function bound to the name withdraw. A future call to wd is unaffected by the changing
balance of waz; its balance is still 20.

def make_withdraw(balance): def withdraw(amount): nonlocal balance if amount > balance:
return 'Insufficient funds' balance = balance - amount return balance return withdraw wd =
make_withdraw(20) wd2 = make_withdraw(7) wd2(6) wd(8)

In this way, each instance of withdraw maintains its own balance state, but that state is
inaccessible to any other function in the program. Viewing this situation at a higher level,
we have created an abstraction of a bank account that manages its own internals but
behaves in a way that models accounts in the world: it changes over time based on its own
history of withdrawal requests.

2.4.6 The Cost of Non-Local Assignment

Our environment model of computation cleanly extends to explain the effects of non-local
assignment. However, non-local assignment introduces some important nuances in the
way we think about names and values.



Previously, our values did not change; only our names and bindings changed. When two
names a and b were both bound to the value 4, it did not matter whether they were bound
to the same 4 or different 4's. As far as we could tell, there was only one 4 object that
never changed.

However, functions with state do not behave this way. When two names wd and wdz2 are
both bound to a withdraw function, it does matter whether they are bound to the same
function or different instances of that function. Consider the following example, which
contrasts the one we just analyzed. In this case, calling the function named by wd2 did
change the value of the function named by wd, because both names refer to the same
function.

def make_withdraw(balance): def withdraw(amount): nonlocal balance if amount > balance:
return 'Insufficient funds' balance = balance - amount return balance return withdraw wd =
make_withdraw(12) wd2 = wd wd2(1) wd(1)

It is not unusual for two names to co-refer to the same value in the world, and so it is in our
programs. But, as values change over time, we must be very careful to understand the
effect of a change on other names that might refer to those values.

The key to correctly analyzing code with non-local assignment is to remember that only
function calls can introduce new frames. Assignment statements always change bindings
in existing frames. In this case, unless make withdraw is called twice, there can be only one
binding for balance.

Sameness and change. These subtleties arise because, by introducing non-pure functions
that change the non-local environment, we have changed the nature of expressions. An
expression that contains only pure function calls is referentially transparent; its value does
not change if we substitute one of its subexpression with the value of that subexpression.

Re-binding operations violate the conditions of referential transparency because they do
more than return a value; they change the environment. When we introduce arbitrary re-
binding, we encounter a thorny epistemological issue: what it means for two values to be
the same. In our environment model of computation, two separately defined functions are
not the same, because changes to one may not be reflected in the other.

In general, so long as we never modify data objects, we can regard a compound data
object to be precisely the totality of its pieces. For example, a rational number is
determined by giving its numerator and its denominator. But this view is no longer valid in
the presence of change, where a compound data object has an "identity" that is something
different from the pieces of which it is composed. A bank account is still "the same" bank
account even if we change the balance by making a withdrawal; conversely, we could have
two bank accounts that happen to have the same balance, but are different objects.

Despite the complications it introduces, non-local assignment is a powerful tool for
creating modular programs. Different parts of a program, which correspond to different
environment frames, can evolve separately throughout program execution. Moreover,
using functions with local state, we are able to implement mutable data types. In fact, we
can implement abstract data types that are equivalent to the built-in 1ist and dict types
introduced above.



2.4.7 Ilterators

Python and many other programming languages provide a unified way to process elements
of a container value sequentially, called an iterator. An iterator is an object that provides
sequential access to values, one by one.

The iterator abstraction has two components: a mechanism for retrieving the next element
in the sequence being processed and a mechanism for signaling that the end of the
sequence has been reached and no further elements remain. For any container, such as a
list or range, an iterator can be obtained by calling the built-in iter function. The contents
of the iterator can be accessed by calling the built-in next function.

>>> primes = [2, 3, 5, 7]
>>> type(primes)

<class 'list'>

>>> iterator = iter(primes)
>>> type(iterator)

<class 'list_ iterator'>
>>> next(iterator)

2

>>> next(iterator)

3

>>> next(iterator)

5

Python signals that there are no more values available by raising a stopIteration exception
when next is called. This exception can be handled using a try statement.

>>> next(iterator)

7

>>> next(iterator)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

An iterator maintains local state to represent its position in a sequence. Each time next is
called, that position advances. Two separate iterators can track two different positions in
the same sequence. However, two names for the same iterator will share a position
because they share the same value.

>>> r = range(3, 13)

>>> s = iter(r) # lst iterator over r
>>> next(s)
3

>>> next(s)

>>> t = iter(r) # 2nd iterator over r
>>> next(t)

>>> next(t)

>>> u = t # Alternate name for the 2nd iterator
>>> next(u)



5
>>> next(u)
6

Advancing the second iterator does not affect the first. Since the last value returned from
the first iterator was 4, it is positioned to return 5 next. On the other hand, the second
iterator is positioned to return 7 next.

>>> next(s)
5
>>> next(t)
7

Calling iter on an iterator will return that iterator, not a copy. This behavior is included in
Python so that a programmer can call iter on a value to get an iterator without having to
worry about whether it is an iterator or a container.

>>> v = iter(t) # Another alterante name for the 2nd iterator
>>> next(v)

8

>>> next(u)

9

>>> next(t)

10

The usefulness of iterators is derived from the fact that the underlying series of data for an
iterator may not be represented explicitly in memory. An iterator provides a mechanism for
considering each of a series of values in turn, but all of those elements do not need to be
stored simultaneously. Instead, when the next element is requested from an iterator, that
element may be computed on demand instead of being retrieved from an existing memory
source.

Ranges are able to compute the elements of a sequence lazily because the sequence
represented is uniform, and any element is easy to compute from the starting and ending
bounds of the range. lterators allow for lazy generation of a much broader class of
underlying sequential datasets because they do not need to provide access to arbitrary
elements of the underlying series. Instead, iterators are only required to compute the next
element of the series, in order, each time another element is requested. While not as
flexible as random access (accessing arbitrary elements of a sequence in any order),
sequential access to sequential data is often sufficient for data processing applications.

2.4.8 Iterables

Any value that can produce iterators is called an iterable value. In Python, an iterable value
is anything that can be passed to the built-in iter function. lterables include sequence
values such as strings and tuples, as well as other containers such as sets and
dictionaries. Iterators are also iterables because they can be passed to the iter function.

Even unordered collections, such as dictionaries in Python 3.5 and earlier, must define an
ordering over their contents when they produce iterators. Dictionaries and sets are



unordered because the programmer has no control over the order of iteration, but Python
does guarantee certain properties about their order in its specification.

>>d = {'one': 1, 'two': 2, 'three': 3}
>>> d

{'one': 1, 'three': 3, 'two': 2}

>>> k = iter(d)

>>> next (k)

'one'

>>> next (k)

'"three'

>>> v = iter(d.values())
>>> next(v)

1

>>> next(v)

3

If a dictionary changes in structure because a key is added or removed, then all iterators
become invalid, and future iterators may exhibit changes to the order of their contents. On
the other hand, changing the value of an existing key does not invalidate iterators or
change the order of their contents.

>>> d.pop('two')
2
>>> next (k)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

A for statement can be used to iterate over the contents of any iterable or iterator.

>>> r = range(3, 6)

>>> g = iter(r)
>>> next(s)
3

>>> for x in s:
print(x)

>>> list(s)

[]

>>> for x in r:
print(x)

I

2.4.9 Built-in lterators

Several built-in functions take as arguments iterable values and return iterators. These
functions are used extensively for lazy sequence processing.

The map function is lazy: calling it does not perform the computation required to compute



elements of its result. Instead, an iterator object is created that can return results if queried
using next. We can observe this fact in the following example, in which the call to print is
delayed until the corresponding element is requested from the doubled iterator.

>>> def double_and print(x):
print('***', X, '=>', 2*X, '***')
return 2*x
>>> s = range(3, 7)
>>> doubled = map(double and print, s) # double and print not yet called
>>> next(doubled) # double and print called once
* %% 3 => 6 ***
6

>>> next(doubled) # double and print called again
*kk 4 => § kk*

8

>>> list(doubled) # double and print called twice more
*k%k 5§ => 10 ***

* k% 6 => 12 * k%

[10, 12]

The filter function returns an iterator over a subset of the values in another iterable. The
zip function returns an iterator over tuples of values that combine one value from each of
multiple iterables.

2.4.10 Generators

Generators allow us to define iterations over arbitrary sequences, even infinite sequences,
by leveraging the features of the Python interpreter.

A generator is an iterator returned by a special class of function called a generator function.
Generator functions are distinguished from regular functions in that rather than containing
return Statements in their body, they use yie1ld statements to return elements of a series.

Generators do not use attributes of an object to track their progress through a series.
Instead, they control the execution of the generator function, which runs until the next
yield statement is executed each time next is called on the generator. For example, the
letters_generator function below returns a generator over the letters a, b, ¢, and then d.

>>> def letters_generator():
current = 'a'
while current <= 'd':
yield current

current = chr(ord(current)+1)

>>> for letter in letters generator():
print(letter)

Q. Q0 o0 o

The yield statement indicates that we are defining a generator function, rather than a



regular function. When called, a generator function doesn't return a particular yielded
value, but instead a generator (Which is a type of iterator) that itself can return the yielded
values. Calling next on the generator continues execution of the generator function from
wherever it left off previously until another yield statement is executed.

The first time next is called, the program executes statements from the body of the

letters generator function until it encounters the yie1d statement. Then, it pauses and
returns the value of current. yield statements do not destroy the newly created
environment; they preserve it for later. When next is called again, execution resumes where
it left off. The values of current and of any other bound names in the scope of
letters_generator are preserved across subsequent calls 10 next.

We can walk through the generator by manually calling next ():

>>> letters = letters_generator()

>>> type(letters)

<class 'generator'>

>>> next(letters)

'

>>> next(letters)

b

>>> next(letters)

o

>>> next(letters)

g

>>> next(letters)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

The generator does not start executing any of the body statements of its generator
function until the first time next is called. The generator raises a stopIteration exception
whenever its generator function returns.

2.4.11 Implementing Lists and Dictionaries

The Python language does not give us access to the implementation of lists, only to the
sequence abstraction and mutation methods built into the language. To understand how a
mutable list could be represented using functions with local state, we will now develop an
implementation of a mutable linked list.

We will represent a mutable linked list by a function that has a linked list as its local state.
Lists need to have an identity, like any mutable value. In particular, we cannot use None to
represent an empty mutable list, because two empty lists are not identical values (e.g.,
appending to one does not append to the other), but None is None. On the other hand, two
different functions that each have empty as their local state will suffice to distinguish two
empty lists.

If a mutable linked list is a function, what arguments does it take? The answer exhibits a
general pattern in programming: the function is a dispatch function and its arguments are
first a message, followed by additional arguments to parameterize that method. This



message is a string naming what the function should do. Dispatch functions are effectively
many functions in one: the message determines the behavior of the function, and the
additional arguments are used in that behavior.

Our mutable list will respond to five different messages: 1en, getitem, push_first,

pop_ first, and str. The first two implement the behaviors of the sequence abstraction. The
next two add or remove the first element of the list. The final message returns a string
representation of the whole linked list.

>>> def mutable link():
"""Return a functional implementation of a mutable linked list.
contents = empty
def dispatch(message, value=None):
nonlocal contents

"woon

if message == 'len':

return len_ link(contents)
elif message == 'getitem':

return getitem link(contents, value)
elif message == 'push first':

contents = link(value, contents)
elif message == 'pop first':

f = first(contents)
contents = rest(contents)
return f
elif message == 'str
return join link(contents, ", ")
return dispatch

We can also add a convenience function to construct a functionally implemented linked list
from any built-in sequence, simply by adding each element in reverse order.

>>> def to_mutable link(source):

woon "womnn

Return a functional list with the same contents as source.
s = mutable link()
for element in reversed(source):
s('push first', element)
return s

In the definition above, the function reversed takes and returns an iterable value; it is
another example of a function that processes sequences.

At this point, we can construct a functionally implemented mutable linked lists. Note that
the linked list itself is a function.

>>> s = to_mutable link(suits)
>>> type(s)

<class 'function'>

>>> print(s('str'))

heart, diamond, spade, club

In addition, we can pass messages to the list s that change its contents, for instance
removing the first element.

>>> s('pop first')



'heart'
>>> print(s('str'))
diamond, spade, club

In principle, the operations push_first and pop_first suffice to make arbitrary changes to
a list. We can always empty out the list entirely and then replace its old contents with the
desired result.

Message passing. Given some time, we could implement the many useful mutation
operations of Python lists, such as extend and insert. We would have a choice: we could
implement them all as functions, which use the existing messages pop_first and
push_first to make all changes. Alternatively, we could add additional e1if clauses to the
body of dispatch, each checking for a message (e.g., 'extend') and applying the
appropriate change to contents directly.

This second approach, which encapsulates the logic for all operations on a data value
within one function that responds to different messages, is a discipline called message
passing. A program that uses message passing defines dispatch functions, each of which
may have local state, and organizes computation by passing "messages" as the first
argument to those functions. The messages are strings that correspond to particular
behaviors.

Implementing Dictionaries. We can also implement a value with similar behavior to a
dictionary. In this case, we use a list of key-value pairs to store the contents of the
dictionary. Each pair is a two-element list.

>>> def dictionary():

womon womon

Return a functional implementation of a dictionary.
records = []
def getitem(key):
matches = [r for r in records if r[0] == key]
if len(matches) ==
key, value = matches[0]
return value
def setitem(key, value):
nonlocal records
non_matches = [r for r in records if r[0] != key]
records = non _matches + [[key, value]]
def dispatch(message, key=None, value=None):

if message == 'getitem':
return getitem(key)
elif message == 'setitem':

setitem(key, value)
return dispatch

Again, we use the message passing method to organize our implementation. We have
supported two messages: getitem and setitem. TO insert a value for a key, we filter out any
existing records with the given key, then add one. In this way, we are assured that each
key appears only once in records. To look up a value for a key, we filter for the record that
matches the given key. We can now use our implementation to store and retrieve values.

>>> d = dictionary()
>>> d('setitem', 3, 9)



>>> d('setitem', 4, 16)
>>> d('getitem', 3)

9

>>> d('getitem', 4)

16

This implementation of a dictionary is not optimized for fast record lookup, because each
call must filter through all records. The built-in dictionary type is considerably more
efficient. The way in which it is implemented is beyond the scope of this text.

2.4.12 Dispatch Dictionaries

The dispatch function is a general method for implementing a message passing interface
for abstract data. To implement message dispatch, we have thus far used conditional
statements to compare the message string to a fixed set of known messages.

The built-in dictionary data type provides a general method for looking up a value for a key.
Instead of using conditionals to implement dispatching, we can use dictionaries with string
keys.

The mutable account data type below is implemented as a dictionary. It has a constructor
account and selector check balance, as well as functions to deposit Or withdraw funds.
Moreover, the local state of the account is stored in the dictionary alongside the functions
that implement its behavior.

def account(initial_balance): def deposit(@amount): dispatch|['balance'] += amount return
dispatch['balance'] def withdraw(amount): if amount > dispatch['balance']: return
'Insufficient funds' dispatch['balance'] -= amount return dispatch['balance'] dispatch =
{'deposit': deposit, ‘withdraw': withdraw, 'balance’: initial_balance} return dispatch def
withdraw(account, amount): return account['withdraw'](amount) def deposit(account,
amount): return account['deposit'](amount) def check_balance(account): return
account['balance'] a = account(20) deposit(a, 5) withdraw(a, 17) check_balance(a)

The name dispatch within the body of the account constructor is bound to a dictionary that
contains the messages accepted by an account as keys. The balance is a number, while
the messages deposit and withdraw are bound to functions. These functions have access
to the dispatch dictionary, and so they can read and change the balance. By storing the
balance in the dispatch dictionary rather than in the account frame directly, we avoid the
need for nonlocal statements in deposit and withdraw.

The operators += and -= are shorthand in Python (and many other languages) for combined
lookup and re-assignment. The last two lines below are equivalent.

>>> a
>>> a
>>> a +=1

2.4.13 Propagating Constraints



Mutable data allows us to simulate systems with change, but also allows us to build new
kinds of abstractions. In this extended example, we combine nonlocal assignment, lists,
and dictionaries to build a constraint-based system that supports computation in multiple
directions. Expressing programs as constraints is a type of declarative programming, in
which a programmer declares the structure of a problem to be solved, but abstracts away
the details of exactly how the solution to the problem is computed.

Computer programs are traditionally organized as one-directional computations, which
perform operations on pre-specified arguments to produce desired outputs. On the other
hand, we often want to model systems in terms of relations among quantities. For
example, we previously considered the ideal gas law, which relates the pressure (p),
volume (v), quantity (n), and temperature (t) of an ideal gas via Boltzmann's constant (x):

p*v=mn=w%%k?%*t

Such an equation is not one-directional. Given any four of the quantities, we can use this
equation to compute the fifth. Yet translating the equation into a traditional computer
language would force us to choose one of the quantities to be computed in terms of the
other four. Thus, a function for computing the pressure could not be used to compute the
temperature, even though the computations of both quantities arise from the same
equation.

In this section, we sketch the design of a general model of linear relationships. We define
primitive constraints that hold between quantities, such as an adder(a, b, c¢) constraint
that enforces the mathematical relationshipa + b = c.

We also define a means of combination, so that primitive constraints can be combined to
express more complex relations. In this way, our program resembles a programming
language. We combine constraints by constructing a network in which constraints are
joined by connectors. A connector is an object that "holds" a value and may participate in
one or more constraints.

For example, we know that the relationship between Fahrenheit and Celsius temperatures
is:
9 * ¢ =5 * (f - 32)

This equation is a complex constraint between ¢ and £. Such a constraint can be thought
of as a network consisting of primitive adder, multiplier, and constant constraints.
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In this figure, we see on the left a multiplier box with three terminals, labeled a, b, and c.
These connect the multiplier to the rest of the network as follows: The a terminal is linked
to a connector celsius, which will hold the Celsius temperature. The b terminal is linked to
a connector w, which is also linked to a constant box that holds 9. The ¢ terminal, which the



multiplier box constrains to be the product of a and b, is linked to the ¢ terminal of another
multiplier box, whose b is connected to a constant 5 and whose a is connected to one of
the terms in the sum constraint.

Computation by such a network proceeds as follows: When a connector is given a value
(by the user or by a constraint box to which it is linked), it awakens all of its associated
constraints (except for the constraint that just awakened it) to inform them that it has a
value. Each awakened constraint box then polls its connectors to see if there is enough
information to determine a value for a connector. If so, the box sets that connector, which
then awakens all of its associated constraints, and so on. For instance, in conversion
between Celsius and Fahrenheit, w, x, and y are immediately set by the constant boxes to
9, 5, and 32, respectively. The connectors awaken the multipliers and the adder, which
determine that there is not enough information to proceed. If the user (or some other part
of the network) sets the celsius connector to a value (say 25), the leftmost multiplier will be
awakened, and it will set uto 25 * 9 = 225. Then u awakens the second multiplier, which
sets v to 45, and v awakens the adder, which sets the fahrenheit connector to 77.

Using the Constraint System. To use the constraint system to carry out the temperature
computation outlined above, we first create two named connectors, celsius and
fahrenheit, by calling the connector constructor.

>>> celsius = connector('Celsius')
>>> fahrenheit = connector('Fahrenheit')

Then, we link these connectors into a network that mirrors the figure above. The function
converter assembles the various connectors and constraints in the network.

>>> def converter(c, f):
"""Connect ¢ to f with constraints to convert from Celsius to Fahrenheit.
u, v, w, X, y = [connector() for _ in range(5)]
multiplier(c, w, u)
multiplier(v, x, u)
adder(v, y, f)
constant(w, 9)
constant(x, 5)
constant(y, 32)
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>>> converter(celsius, fahrenheit)

We will use a message passing system to coordinate constraints and connectors.
Constraints are dictionaries that do not hold local states themselves. Their responses to
messages are non-pure functions that change the connectors that they constrain.

Connectors are dictionaries that hold a current value and respond to messages that
manipulate that value. Constraints will not change the value of connectors directly, but
instead will do so by sending messages, so that the connector can notify other constraints
in response to the change. In this way, a connector represents a number, but also
encapsulates connector behavior.

One message we can send to a connector is to set its value. Here, we (the 'user') set the
value of celsius to 25.



>>> celsius['set val']('user', 25)
Celsius = 25
Fahrenheit = 77.0

Not only does the value of ce1sius change to 25, but its value propagates through the
network, and so the value of fahrenheit is changed as well. These changes are printed
because we named these two connectors when we constructed them.

Now we can try to set fahrenheit to a new value, say 212.

>>> fahrenheit[ 'set val']('user', 212)
Contradiction detected: 77.0 vs 212

The connector complains that it has sensed a contradiction: Its value is 77.0, and someone
is trying to set it to 212. If we really want to reuse the network with new values, we can tell
celsius to forget its old value:

>>> celsius[ 'forget']('user')
Celsius is forgotten
Fahrenheit is forgotten

The connector celsius finds that the user, who set its value originally, is now retracting that
value, so celsius agrees to lose its value, and it informs the rest of the network of this fact.
This information eventually propagates to fahrenheit, which now finds that it has no
reason for continuing to believe that its own value is 77. Thus, it also gives up its value.

Now that fahrenheit has no value, we are free to set it to 212:

>>> fahrenheit['set val']('user', 212)
Fahrenheit = 212
Celsius = 100.0

This new value, when propagated through the network, forces celsius to have a value of
100. We have used the very same network to compute celsius given fahrenheit and to
compute fahrenheit given celsius. This non-directionality of computation is the
distinguishing feature of constraint-based systems.

Implementing the Constraint System. As we have seen, connectors are dictionaries that
map message names to function and data values. We will implement connectors that
respond to the following messages:

® connector[ 'set_val'](source, value) indicates that the source is requesting the
connector to set its current value 1o value.

® connector[ 'has_val']() returns whether the connector already has a value.

e connector|[ 'val'] is the current value of the connector.

® connector[ 'forget'] (source) tells the connector that the source is requesting it to

forget its value.
® connector|[ 'connect' ] (source) tells the connector to participate in a new constraint,

the source.



Constraints are also dictionaries, which receive information from connectors by means of
two messages:

® constraint[ 'new val']() indicates that some connector that is connected to the
constraint has a new value.

® constraint['forget']() indicates that some connector that is connected to the
constraint has forgotten its value.

When constraints receive these messages, they propagate them appropriately to other
connectors.

The adder function constructs an adder constraint over three connectors, where the first
two must add to the third: a + b = c. To support multidirectional constraint propagation,
the adder must also specify that it subtracts a from ¢ to get b and likewise subtracts b from
c to get a.

>>> from operator import add, sub

>>> def adder(a, b, c):
"""The constraint that a + b = c.
return make ternary constraint(a, b, ¢, add, sub, sub)

"womn

We would like to implement a generic ternary (three-way) constraint, which uses the three
connectors and three functions from adder to create a constraint that accepts new val and
forget messages. The response to messages are local functions, which are placed in a
dictionary called constraint.

>>> def make ternary constraint(a, b, c, ab, ca, cb):
"""The constraint that ab(a,b)=c and ca(c,a)=b and cb(c,b) = a."""
def new value():
av, bv, cv = [connector['has val']() for connector in (a, b, c)]
if av and bv:
c['set val'](constraint, ab(a['val'], b['val']))
elif av and cv:
b['set val'](constraint, ca(c['val'], a['val']))
elif bv and cv:
a[ 'set _val'](constraint, cb(c['val'], b['val']))
def forget value():
for connector in (a, b, c):
connector[ 'forget'](constraint)
constraint = {'new _val': new value, 'forget': forget value}
for connector in (a, b, c):
connector|[ 'connect'](constraint)
return constraint

The dictionary called constraint is a dispatch dictionary, but also the constraint object
itself. It responds to the two messages that constraints receive, but is also passed as the
source argument in calls to its connectors.

The constraint's local function new value is called whenever the constraint is informed that
one of its connectors has a value. This function first checks to see if both a and b have
values. If so, it tells ¢ to set its value to the return value of function ab, which is add in the
case of an adder. The constraint passes itself (constraint) as the source argument of the
connector, which is the adder object. If a and b do not both have values, then the



constraint checks a and ¢, and so on.

If the constraint is informed that one of its connectors has forgotten its value, it requests
that all of its connectors now forget their values. (Only those values that were set by this
constraint are actually lost.)

A multiplier is very similar to an adder.

>>> from operator import mul, truediv
>>> def multiplier(a, b, c):
"""The constraint that a * b = c.

mwomnon

return make ternary constraint(a, b, ¢, mul, truediv, truediv)

A constant is a constraint as well, but one that is never sent any messages, because it
involves only a single connector that it sets on construction.

>>> def constant(connector, value):
"""The constraint that connector = value.
constraint = {}
connector|[ 'set val'](constraint, value)
return constraint

mwomon

These three constraints are sufficient to implement our temperature conversion network.

Representing connectors. A connector is represented as a dictionary that contains a value,
but also has response functions with local state. The connector must track the informant
that gave it its current value, and a list of constraints in which it participates.

The constructor connector has local functions for setting and forgetting values, which are
the responses to messages from constraints.

>>> def connector(name=None):

"""A connector between constraints.

informant = None

constraints = []

def set value(source, value):
nonlocal informant
val = connector[ 'val']
if val is None:

muon

informant, connector['val'] = source, value
if name is not None:
print(name, '=', value)
inform all except(source, 'new val', constraints)
else:
if val != value:

print('Contradiction detected:', val, 'vs', value)
def forget value(source):
nonlocal informant
if informant == source:
informant, connector['val'] = None, None
if name is not None:
print(name, 'is forgotten')
inform all except(source, 'forget', constraints)
connector = {'val': Nomne,
'set_val': set_value,



'forget': forget value,

'has val': lambda: connector['val'] is not None,

'connect': lambda source: constraints.append(source)}
return connector

A connector is again a dispatch dictionary for the five messages used by constraints to
communicate with connectors. Four responses are functions, and the final response is the
value itself.

The local function set_value is called when there is a request to set the connector's value.
If the connector does not currently have a value, it will set its value and remember as
informant the source constraint that requested the value to be set. Then the connector will
notify all of its participating constraints except the constraint that requested the value to be
set. This is accomplished using the following iterative function.

>>> def inform all except(source, message, constraints):
"""Inform all constraints of the message, except source.
for c in constraints:

woon

if ¢ != source:
c[message] ()

If a connector is asked to forget its value, it calls the local function forget-value, Which first
checks to make sure that the request is coming from the same constraint that set the value
originally. If so, the connector informs its associated constraints about the loss of the
value.

The response to the message has_val indicates whether the connector has a value. The
response to the message connect adds the source constraint to the list of constraints.

The constraint program we have designed introduces many ideas that will appear again in
object-oriented programming. Constraints and connectors are both abstractions that are
manipulated through messages. When the value of a connector is changed, it is changed
via a message that not only changes the value, but validates it (checking the source) and
propagates its effects (informing other constraints). In fact, we will use a similar
architecture of dictionaries with string-valued keys and functional values to implement an
object-oriented system later in this chapter.

Continue: 2.5 Object-Oriented Programming

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold
Abelson and Gerald Jay Sussman, is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.


http://localhost:8080/pages/25-object-oriented-programming.html
http://www.denero.org
http://mitpress.mit.edu/sicp/
http://creativecommons.org/licenses/by-sa/3.0/

2.5 Object-Oriented Programming

Object-oriented programming (OOP) is a method for organizing programs that brings
together many of the ideas introduced in this chapter. Like the functions in data
abstraction, classes create abstraction barriers between the use and implementation of
data. Like dispatch dictionaries, objects respond to behavioral requests. Like mutable data
structures, objects have local state that is not directly accessible from the global
environment. The Python object system provides convenient syntax to promote the use of
these techniques for organizing programs. Much of this syntax is shared among other
object-oriented programming languages.

The object system offers more than just convenience. It enables a new metaphor for
designing programs in which several independent agents interact within the computer.
Each object bundles together local state and behavior in a way that abstracts the
complexity of both. Objects communicate with each other, and useful results are
computed as a consequence of their interaction. Not only do objects pass messages, they
also share behavior among other objects of the same type and inherit characteristics from
related types.

The paradigm of object-oriented programming has its own vocabulary that supports the
object metaphor. We have seen that an object is a data value that has methods and
attributes, accessible via dot notation. Every object also has a type, called its class. To
create new types of data, we implement new classes.

2.5.1 Objects and Classes

A class serves as a template for all objects whose type is that class. Every object is an
instance of some particular class. The objects we have used so far all have built-in classes,
but new user-defined classes can be created as well. A class definition specifies the
attributes and methods shared among objects of that class. We will introduce the class
statement by revisiting the example of a bank account.

When introducing local state, we saw that bank accounts are naturally modeled as mutable
values that have a balance. A bank account object should have a withdraw method that
updates the account balance and returns the requested amount, if it is available. To
complete the abstraction: a bank account should be able to return its current balance,
return the name of the account nolder, and an amount for deposit.

An account class allows us to create multiple instances of bank accounts. The act of
creating a new object instance is known as instantiating the class. The syntax in Python for
instantiating a class is identical to the syntax of calling a function. In this case, we call
Account With the argument 'kirk', the account holder's name.

>>> a = Account( 'Kirk')

An attribute of an object is a name-value pair associated with the object, which is
accessible via dot notation. The attributes specific to a particular object, as opposed to all
objects of a class, are called instance attributes. Each account has its own balance and



account holder name, which are examples of instance attributes. In the broader
programming community, instance attributes may also be called fields, properties, or
instance variables.

>>> a.holder
'Kirk'

>>> a.balance
0

Functions that operate on the object or perform object-specific computations are called
methods. The return values and side effects of a method can depend upon and change
other attributes of the object. For example, deposit is a method of our account object a. It
takes one argument, the amount to deposit, changes the balance attribute of the object,
and returns the resulting balance.

>>> a.deposit(15)
15

We say that methods are invoked on a particular object. As a result of invoking the
withdraw method, either the withdrawal is approved and the amount is deducted, or the
request is declined and the method returns an error message.

>>> a.withdraw(10) # The withdraw method returns the balance after withdrawal
5

>>> a.balance # The balance attribute has changed

5

>>> a.withdraw(10)

'Insufficient funds'

As illustrated above, the behavior of a method can depend upon the changing attributes of
the object. Two calls to withdraw with the same argument return different results.

2.5.2 Defining Classes

User-defined classes are created by class statements, which consist of a single clause. A
class statement defines the class name, then includes a suite of statements to define the
attributes of the class:

class <name>:
<suite>

When a class statement is executed, a new class is created and bound to <name> in the first
frame of the current environment. The suite is then executed. Any names bound within the
<suite> Of a class statement, through def or assignment statements, create or modify
attributes of the class.

Classes are typically organized around manipulating instance attributes, which are the
name-value pairs associated with each instance of that class. The class specifies the
instance attributes of its objects by defining a method for initializing new objects. For
example, part of initializing an object of the account class is to assign it a starting balance



of 0.

The <suite> oOf a c1lass statement contains def statements that define new methods for
objects of that class. The method that initializes objects has a special name in Python,
__init__ (two underscores on each side of the word "init"), and is called the constructor for
the class.

>>> class Account:
def init (self, account_holder):
self.balance = 0
self.holder = account holder

The init method for account has two formal parameters. The first one, self, is bound
to the newly created account object. The second parameter, account_holder, is bound to
the argument passed to the class when it is called to be instantiated.

The constructor binds the instance attribute name balance to 0. It also binds the attribute
name holder to the value of the name account_holder. The formal parameter
account_holder is alocal name inthe init method. On the other hand, the name
holder that is bound via the final assignment statement persists, because it is stored as an
attribute of se1£ using dot notation.

Having defined the account class, we can instantiate it.

>>> a = Account( 'Kirk')

This "call" to the account class creates a new object that is an instance of account, then
calls the constructor function __init__ with two arguments: the newly created object and
the string 'kirk'. By convention, we use the parameter name self for the first argument of
a constructor, because it is bound to the object being instantiated. This convention is
adopted in virtually all Python code.

Now, we can access the object's balance and holder using dot notation.

>>> a.balance
0

>>> a.holder
'Kirk'

Identity. Each new account instance has its own balance attribute, the value of which is
independent of other objects of the same class.

>>> b = Account('Spock')

>>> b.balance = 200

>>> [acc.balance for acc in (a, b)]
[0, 200]

To enforce this separation, every object that is an instance of a user-defined class has a
unique identity. Object identity is compared using the is and is not operators.

>>> a is a
True



>>> a is not b
True

Despite being constructed from identical calls, the objects bound to a and b are not the
same. As usual, binding an object to a new name using assignment does not create a new
object.

>>> ¢ = a
>>> ¢ is a
True

New objects that have user-defined classes are only created when a class (such as
Account) is instantiated with call expression syntax.

Methods. Object methods are also defined by a def statement in the suite of a c1ass
statement. Below, deposit and withdraw are both defined as methods on objects of the
Account class.

>>> class Account:

def init (self, account holder):
self.balance = 0
self.holder = account holder

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
if amount > self.balance:

return 'Insufficient funds'

self.balance = self.balance - amount
return self.balance

While method definitions do not differ from function definitions in how they are declared,
method definitions do have a different effect when executed. The function value that is
created by a def statement within a c1ass statement is bound to the declared name, but
bound locally within the class as an attribute. That value is invoked as a method using dot
notation from an instance of the class.

Each method definition again includes a special first parameter se1£, which is bound to the
object on which the method is invoked. For example, let us say that deposit is invoked on
a particular account object and passed a single argument value: the amount deposited. The
object itself is bound to se1£, while the argument is bound t0 amount. All invoked methods
have access to the object via the se1f parameter, and so they can all access and
manipulate the object's state.

To invoke these methods, we again use dot notation, as illustrated below.

>>> spock account = Account('Spock')
>>> spock_account.deposit(100)

100

>>> spock account.withdraw(90)

10

>>> spock_account.withdraw(90)
'Insufficient funds'



>>> spock_account.holder
'Spock

When a method is invoked via dot notation, the object itself (bound to spock account, in
this case) plays a dual role. First, it determines what the name withdraw means; withdraw is
not a name in the environment, but instead a name that is local to the account class.
Second, it is bound to the first parameter se1f when the withdraw method is invoked.

2.5.3 Message Passing and Dot Expressions

Methods, which are defined in classes, and instance attributes, which are typically
assigned in constructors, are the fundamental elements of object-oriented programming.
These two concepts replicate much of the behavior of a dispatch dictionary in a message
passing implementation of a data value. Objects take messages using dot notation, but
instead of those messages being arbitrary string-valued keys, they are names local to a
class. Objects also have named local state values (the instance attributes), but that state
can be accessed and manipulated using dot notation, without having to employ nonlocal
statements in the implementation.

The central idea in message passing was that data values should have behavior by
responding to messages that are relevant to the abstract type they represent. Dot notation
is a syntactic feature of Python that formalizes the message passing metaphor. The
advantage of using a language with a built-in object system is that message passing can
interact seamlessly with other language features, such as assignment statements. We do
not require different messages to "get" or "set" the value associated with a local attribute
name; the language syntax allows us to use the message name directly.

Dot expressions. The code fragment spock_account.deposit is called a dot expression. A
dot expression consists of an expression, a dot, and a name:

<expression> . <name>
The <expression> can be any valid Python expression, but the <name> must be a simple

name (not an expression that evaluates to a name). A dot expression evaluates to the value
of the attribute with the given <name>, for the object that is the value of the <expression>.

The built-in function getattr also returns an attribute for an object by name. It is the
function equivalent of dot notation. Using getattr, we can look up an attribute using a
string, just as we did with a dispatch dictionary.

>>> getattr(spock account, 'balance')
10

We can also test whether an object has a named attribute with hasattr.

>>> hasattr(spock account, 'deposit')
True

The attributes of an object include all of its instance attributes, along with all of the
attributes (including methods) defined in its class. Methods are attributes of the class that



require special handling.

Methods and functions. When a method is invoked on an object, that object is implicitly
passed as the first argument to the method. That is, the object that is the value of the
<expression> 10 the left of the dot is passed automatically as the first argument to the
method named on the right side of the dot expression. As a result, the object is bound to
the parameter seift.

To achieve automatic se1f binding, Python distinguishes between functions, which we
have been creating since the beginning of the text, and bound methods, which couple
together a function and the object on which that method will be invoked. A bound method
value is already associated with its first argument, the instance on which it was invoked,
which will be named se1f when the method is called.

We can see the difference in the interactive interpreter by calling type on the returned
values of dot expressions. As an attribute of a class, a method is just a function, but as an
attribute of an instance, it is a bound method:

>>> type(Account.deposit)
<class 'function'>

>>> type(spock_account.deposit)
<class 'method'>

These two results differ only in the fact that the first is a standard two-argument function
with parameters self and amount. The second is a one-argument method, where the name
self Will be bound to the object named spock_account automatically when the method is
called, while the parameter amount will be bound to the argument passed to the method.
Both of these values, whether function values or bound method values, are associated with
the same deposit function body.

We can call deposit in two ways: as a function and as a bound method. In the former case,
we must supply an argument for the se1f parameter explicitly. In the latter case, the se1t
parameter is bound automatically.

>>> Account.deposit(spock account, 1001) # The deposit function takes 2 arguments
1011

>>> spock account.deposit(1000) # The deposit method takes 1 argument
2011

The function getattr behaves exactly like dot notation: if its first argument is an object but
the name is a method defined in the class, then getattr returns a bound method value. On
the other hand, if the first argument is a class, then getattr returns the attribute value
directly, which is a plain function.

Naming Conventions. Class names are conventionally written using the CapWords
convention (also called CamelCase because the capital letters in the middle of a name look
like humps). Method names follow the standard convention of naming functions using
lowercased words separated by underscores.

In some cases, there are instance variables and methods that are related to the
maintenance and consistency of an object that we don't want users of the object to see or



use. They are not part of the abstraction defined by a class, but instead part of the
implementation. Python's convention dictates that if an attribute name starts with an
underscore, it should only be accessed within methods of the class itself, rather than by
users of the class.

2.5.4 Class Attributes

Some attribute values are shared across all objects of a given class. Such attributes are
associated with the class itself, rather than any individual instance of the class. For
instance, let us say that a bank pays interest on the balance of accounts at a fixed interest
rate. That interest rate may change, but it is a single value shared across all accounts.

Class attributes are created by assignment statements in the suite of a c1ass statement,
outside of any method definition. In the broader developer community, class attributes may
also be called class variables or static variables. The following class statement creates a
class attribute for account with the name interest.

>>> class Account:
interest = 0.02 # A class attribute
def _ init_(self, account_holder):
self.balance = 0
self.holder = account_ holder
# Additional methods would be defined here

This attribute can still be accessed from any instance of the class.

>>> spock account = Account('Spock')
>>> kirk account = Account('Kirk'")
>>> spock_account.interest

0.02

>>> kirk_account.interest

0.02

However, a single assignment statement to a class attribute changes the value of the
attribute for all instances of the class.

>>> Account.interest = 0.04
>>> spock account.interest
0.04

>>> kirk account.interest
0.04

Attribute names. We have introduced enough complexity into our object system that we
have to specify how names are resolved to particular attributes. After all, we could easily
have a class attribute and an instance attribute with the same name.

As we have seen, a dot expression consists of an expression, a dot, and a name:

<express ion> . <name>

To evaluate a dot expression:



1. Evaluate the <expression> to the left of the dot, which yields the object of the dot
expression.

2. <name> is matched against the instance attributes of that object; if an attribute with
that name exists, its value is returned.

3. If <name> does not appear among instance attributes, then <name> is looked up in the
class, which yields a class attribute value.

4. That value is returned unless it is a function, in which case a bound method is
returned instead.

In this evaluation procedure, instance attributes are found before class attributes, just as
local names have priority over global in an environment. Methods defined within the class
are combined with the object of the dot expression to form a bound method during the
fourth step of this evaluation procedure. The procedure for looking up a name in a class
has additional nuances that will arise shortly, once we introduce class inheritance.

Attribute assignment. All assignment statements that contain a dot expression on their left-
hand side affect attributes for the object of that dot expression. If the object is an instance,
then assignment sets an instance attribute. If the object is a class, then assignment sets a
class attribute. As a consequence of this rule, assignment to an attribute of an object
cannot affect the attributes of its class. The examples below illustrate this distinction.

If we assign to the named attribute interest of an account instance, we create a new
instance attribute that has the same name as the existing class attribute.

>>> kirk_account.interest = 0.08

and that attribute value will be returned from a dot expression.

>>> kirk account.interest
0.08

However, the class attribute interest still retains its original value, which is returned for all
other accounts.

>>> spock account.interest
0.04

Changes to the class attribute interest will affect spock_account, but the instance attribute
for kirk_account Will be unaffected.

>>> Account.interest = 0.05 # changing the class attribute

>>> spock_account.interest # changes instances without like-named instance attributes
0.05

>>> kirk_account.interest # but the existing instance attribute is unaffected

0.08

2.5.5 Inheritance

When working in the object-oriented programming paradigm, we often find that different



types are related. In particular, we find that similar classes differ in their amount of
specialization. Two classes may have similar attributes, but one represents a special case
of the other.

For example, we may want to implement a checking account, which is different from a
standard account. A checking account charges an extra $1 for each withdrawal and has a
lower interest rate. Here, we demonstrate the desired behavior.

>>> ch = CheckingAccount( 'Spock')

>>> ch.interest # Lower interest rate for checking accounts
0.01

>>> ch.deposit(20) # Deposits are the same

20

>>> ch.withdraw(5) # withdrawals decrease balance by an extra charge
14

A checkingAccount IS a specialization of an account. In OOP terminology, the generic
account will serve as the base class of checkingaccount, Whilé checkingaccount Will be a
subclass of account. (The terms parent class and superclass are also used for the base
class, while child class is also used for the subclass.)

A subclass inherits the attributes of its base class, but may override certain attributes,
including certain methods. With inheritance, we only specify what is different between the
subclass and the base class. Anything that we leave unspecified in the subclass is
automatically assumed to behave just as it would for the base class.

Inheritance also has a role in our object metaphor, in addition to being a useful
organizational feature. Inheritance is meant to represent is-a relationships between classes,
which contrast with has-a relationships. A checking account is-a specific type of account,
S0 having a checkingaccount inherit from account is an appropriate use of inheritance. On
the other hand, a bank has-a list of bank accounts that it manages, so neither should
inherit from the other. Instead, a list of account objects would be naturally expressed as an
instance attribute of a bank object.

2.5.6 Using Inheritance

First, we give a full implementation of the account class, which includes docstrings for the
class and its methods.

>>> class Account:
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A bank account that has a non-negative balance.
interest = 0.02
def _ init_(self, account_holder):
self.balance = 0
self.holder = account_ holder
def deposit(self, amount):
"""Increase the account balance by amount and return the new balance."""
self.balance = self.balance + amount
return self.balance
def withdraw(self, amount):
"""Decrease the account balance by amount and return the new balance."""
if amount > self.balance:



return 'Insufficient funds'
self.balance = self.balance - amount
return self.balance

A full implementation of checkingaccount appears below. We specify inheritance by placing
an expression that evaluates to the base class in parentheses after the class name.

>>> class CheckingAccount (Account):
"""A bank account that charges for withdrawals.
withdraw charge = 1
interest = 0.01
def withdraw(self, amount):
return Account.withdraw(self, amount + self.withdraw charge)

mwoon

Here, we introduce a class attribute withdraw charge that is specific to the checkingaccount
class. We assign a lower value to the interest attribute. We also define a new withdraw
method to override the behavior defined in the account class. With no further statements in
the class suite, all other behavior is inherited from the base class account.

>>> checking = CheckingAccount('Sam')
>>> checking.deposit(10)

10

>>> checking.withdraw(5)

4

>>> checking.interest

0.01

The expression checking.deposit evaluates to a bound method for making deposits, which
was defined in the account class. When Python resolves a name in a dot expression that is
not an attribute of the instance, it looks up the name in the class. In fact, the act of "looking
up" a name in a class tries to find that name in every base class in the inheritance chain for
the original object's class. We can define this procedure recursively. To look up a name in
a class.

1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.

In the case of deposit, Python would have looked for the name first on the instance, and
then in the checkingaccount class. Finally, it would look in the account class, where deposit
is defined. According to our evaluation rule for dot expressions, since deposit is a function
looked up in the class for the checking instance, the dot expression evaluates to a bound
method value. That method is invoked with the argument 10, which calls the deposit
method with se1f bound to the checking object and amount bound to 10.

The class of an object stays constant throughout. Even though the deposit method was
found in the account class, deposit is called with se1f bound to an instance of
CheckingAccount,nOtOfAccount

Calling ancestors. Attributes that have been overridden are still accessible via class
objects. For instance, we implemented the withdraw method of checkingaAccount by calling
the withdraw method of account with an argument that included the withdraw_charge.



Notice that we called se1f.withdraw charge rather than the equivalent
CheckingAccount.withdraw charge. The benefit of the former over the latter is that a class
that inherits from checkingaccount might override the withdrawal charge. If that is the case,
we would like our implementation of withdraw to find that new value instead of the old one.

Interfaces. It is extremely common in object-oriented programs that different types of
objects will share the same attribute names. An object interface is a collection of attributes
and conditions on those attributes. For example, all accounts must have deposit and
withdraw methods that take numerical arguments, as well as a balance attribute. The
classes account and checkingaccount both implement this interface. Inheritance specifically
promotes name sharing in this way. In some programming languages such as Java,
interface implementations must be explicitly declared. In others such as Python, Ruby, and
Go, any object with the appropriate names implements an interface.

The parts of your program that use objects (rather than implementing them) are most
robust to future changes if they do not make assumptions about object types, but instead
only about their attribute names. That is, they use the object abstraction, rather than
assuming anything about its implementation.

For example, let us say that we run a lottery, and we wish to deposit $5 into each of a list
of accounts. The following implementation does not assume anything about the types of
those accounts, and therefore works equally well with any type of object that has a deposit
method:

>>> def deposit all(winners, amount=5):
for account in winners:
account.deposit (amount)

The function deposit_all above assumes only that each account satisfies the account
object abstraction, and so it will work with any other account classes that also implement
this interface. Assuming a particular class of account would violate the abstraction barrier
of the account object abstraction. For example, the following implementation will not
necessarily work with new kinds of accounts:

>>> def deposit all(winners, amount=5):
for account in winners:
Account.deposit(account, amount)

We will address this topic in more detail later in the chapter.

2.5.7 Multiple Inheritance

Python supports the concept of a subclass inheriting attributes from multiple base classes,
a language feature called multiple inheritance.

Suppose that we have a savingsaAccount that inherits from account, but charges customers
a small fee every time they make a deposit.

>>> class SavingsAccount (Account):
deposit_charge = 2



def deposit(self, amount):
return Account.deposit(self, amount - self.deposit charge)

Then, a clever executive conceives of an asseenonTvaccount account with the best features
of both checkingaAccount and savingsaccount: withdrawal fees, deposit fees, and a low
interest rate. It's both a checking and a savings account in one! "If we build it," the
executive reasons, "someone will sign up and pay all those fees. We'll even give them a
dollar."

>>> class AsSeenOnTVAccount (CheckingAccount, SavingsAccount):
def _ init_(self, account_holder):
self.holder = account holder
self.balance = 1 # A free dollar!

In fact, this implementation is complete. Both withdrawal and deposits will generate fees,
using the function definitions in checkingAccount and savingsAccount respectively.

>>> such_a deal = AsSeenOnTVAccount("John")
>>> such_a_deal.balance

>>> such_a deal.deposit(20) # $2 fee from SavingsAccount.deposit
19

>>> such_a deal.withdraw(5) # §1 fee from CheckingAccount.withdraw
13

Non-ambiguous references are resolved correctly as expected:

>>> such_a_deal.deposit_charge
2
>>> such_a_deal.withdraw_charge
1

But what about when the reference is ambiguous, such as the reference to the withdraw
method that is defined in both account and checkingaccount? The figure below depicts an
inheritance graph for the asseenonTvaccount class. Each arrow points from a subclass to a
base class.

Account

/N

CheckingAccount| |SavingsAccount

N/

AsSeenOnTVAccount

For a simple "diamond" shape like this, Python resolves names from left to right, then



upwards. In this example, Python checks for an attribute name in the following classes, in
order, until an attribute with that name is found:

AsSeenOnTVAccount, CheckingAccount, SavingsAccount, Account, object

There is no correct solution to the inheritance ordering problem, as there are cases in
which we might prefer to give precedence to certain inherited classes over others.
However, any programming language that supports multiple inheritance must select some
ordering in a consistent way, so that users of the language can predict the behavior of their
programs.

Further reading. Python resolves this name using a recursive algorithm called the C3
Method Resolution Ordering. The method resolution order of any class can be queried
using the mro method on all classes.

>>> [c._ name__ for c in AsSeenOnTVAccount.mro()]
[ 'AsSeenOnTVAccount', 'CheckingAccount', 'SavingsAccount', 'Account', 'object']

The precise algorithm for finding method resolution orderings is not a topic for this text, but
is described by Python's primary author with a reference to the original paper.

2.5.8 The Role of Objects

The Python object system is designed to make data abstraction and message passing
both convenient and flexible. The specialized syntax of classes, methods, inheritance, and
dot expressions all enable us to formalize the object metaphor in our programs, which
improves our ability to organize large programs.

In particular, we would like our object system to promote a separation of concerns among
the different aspects of the program. Each object in a program encapsulates and manages
some part of the program's state, and each class statement defines the functions that
implement some part of the program's overall logic. Abstraction barriers enforce the
boundaries between different aspects of a large program.

Object-oriented programming is particularly well-suited to programs that model systems
that have separate but interacting parts. For instance, different users interact in a social
network, different characters interact in a game, and different shapes interact in a physical
simulation. When representing such systems, the objects in a program often map naturally
onto objects in the system being modeled, and classes represent their types and
relationships.

On the other hand, classes may not provide the best mechanism for implementing certain
abstractions. Functional abstractions provide a more natural metaphor for representing
relationships between inputs and outputs. One should not feel compelled to fit every bit of
logic in a program within a class, especially when defining independent functions for
manipulating data is more natural. Functions can also enforce a separation of concerns.

Multi-paradigm languages such as Python allow programmers to match organizational
paradigms to appropriate problems. Learning to identify when to introduce a new class, as
opposed to a new function, in order to simplify or modularize a program, is an important
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design skill in software engineering that deserves careful attention.

Continue: 2.6 Implementing Classes and Objects

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold
Abelson and Gerald Jay Sussman, is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.


http://localhost:8080/pages/26-implementing-classes-and-objects.html
http://www.denero.org
http://mitpress.mit.edu/sicp/
http://creativecommons.org/licenses/by-sa/3.0/

2.6 Implementing Classes and Objects

When working in the object-oriented programming paradigm, we use the object metaphor
to guide the organization of our programs. Most logic about how to represent and
manipulate data is expressed within class declarations. In this section, we see that classes
and objects can themselves be represented using just functions and dictionaries. The
purpose of implementing an object system in this way is to illustrate that using the object
metaphor does not require a special programming language. Programs can be object-
oriented, even in programming languages that do not have a built-in object system.

In order to implement objects, we will abandon dot notation (which does require built-in
language support), but create dispatch dictionaries that behave in much the same way as
the elements of the built-in object system. We have already seen how to implement
message-passing behavior through dispatch dictionaries. To implement an object system
in full, we send messages between instances, classes, and base classes, all of which are
dictionaries that contain attributes.

We will not implement the entire Python object system, which includes features that we
have not covered in this text (e.g., meta-classes and static methods). We will focus instead
on user-defined classes without multiple inheritance and without introspective behavior
(such as returning the class of an instance). Our implementation is not meant to follow the
precise specification of the Python type system. Instead, it is designed to implement the
core functionality that enables the object metaphor.

2.6.1 Instances

We begin with instances. An instance has named attributes, such as the balance of an
account, which can be set and retrieved. We implement an instance using a dispatch
dictionary that responds to messages that "get" and "set" attribute values. Attributes
themselves are stored in a local dictionary called attributes.

As we have seen previously in this chapter, dictionaries themselves are abstract data
types. We implemented dictionaries with lists, we implemented lists with pairs, and we
implemented pairs with functions. As we implement an object system in terms of
dictionaries, keep in mind that we could just as well be implementing objects using
functions alone.

To begin our implementation, we assume that we have a class implementation that can
look up any names that are not part of the instance. We pass in a class t0 make_instance as
the parameter cis.

>>> def make instance(cls):
"""Return a new object instance, which is a dispatch dictionary."""
def get_value(name):
if name in attributes:
return attributes[name]
else:
value = cls[ 'get'](name)
return bind method(value, instance)



def set value(name, value):

attributes[name] = value
attributes = {}
instance = {'get': get_value, 'set': set_value}

return instance

The instance is a dispatch dictionary that responds to the messages get and set. The set
message corresponds to attribute assignment in Python's object system: all assigned
attributes are stored directly within the object's local attribute dictionary. In get, if name
does not appear in the local attributes dictionary, then it is looked up in the class. If the
value returned by cis is a function, it must be bound to the instance.

Bound method values. The get_value function in make instance finds a named attribute in
its class with get, then calls bind_method. Binding a method only applies to function values,
and it creates a bound method value from a function value by inserting the instance as the
first argument:

>>> def bind method(value, instance):

"""Return a bound method if value is callable, or value otherwise."""
if callable(value):

def method(*args):

return value(instance, *args)

return method
else:

return value

When a method is called, the first parameter se1£ will be bound to the value of instance by
this definition.

2.6.2 Classes

A class is also an object, both in Python's object system and the system we are
implementing here. For simplicity, we say that classes do not themselves have a class. (In
Python, classes do have classes; almost all classes share the same class, called type.) A
class can respond to get and set messages, as well as the new message:

>>> def make class(attributes, base class=None):

womn "womon

Return a new class, which is a dispatch dictionary.
def get_value(name):
if name in attributes:
return attributes[name]
elif base class is not None:
return base _class|[ 'get'](name)
def set value(name, value):
attributes[name] = value
def new(*args):
return init instance(cls, *args)
cls = {'get': get _value, 'set
return cls

set value, 'new': new}

Unlike an instance, the get function for classes does not query its class when an attribute
is not found, but instead queries its base_class. No method binding is required for classes.



Initialization. The new function in make class calls init instance, Which first makes a new
instance, then invokes a method called __init .

>>> def init instance(cls, *args):
"""Return a new object with type cls, initialized with args.

mwomon

instance = make instance(cls)
init = cls['get'](' init ")
if init:

init(instance, *args)
return instance

This final function completes our object system. We now have instances, which set locally
but fall back to their classes on get. After an instance looks up a name in its class, it binds
itself to function values to create methods. Finally, classes can create new instances, and
they apply their __init__ constructor function immediately after instance creation.

In this object system, the only function that should be called by the user is make _class. All
other functionality is enabled through message passing. Similarly, Python's object system
is invoked via the c1ass statement, and all of its other functionality is enabled through dot
expressions and calls to classes.

2.6.3 Using Implemented Objects

We now return to use the bank account example from the previous section. Using our
implemented object system, we will create an account class, a checkingaAccount subclass,
and an instance of each.

The account class is created through a make_account_class function, which has structure
similar to a c1ass statement in Python, but concludes with a call t0 make_class.

>>> def make account class():
"""Return the Account class, which has deposit and withdraw methods.
interest = 0.02
def init (self, account_holder):
self[ 'set']('holder', account_ holder)
self[ 'set']('balance’', 0)
def deposit(self, amount):
"""Increase the account balance by amount and return the new balance.
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new_balance = self['get']('balance') + amount
self[ 'set']('balance', new balance)
return self[ 'get']('balance')

def withdraw(self, amount):
"""Decrease the account balance by amount and return the new balance.
balance = self['get']('balance')
if amount > balance:
return 'Insufficient funds'
self[ 'set']('balance', balance - amount)
return self['get']('balance')
return make class(locals())

mwooon

The final call to 1ocals returns a dictionary with string keys that contains the name-value
bindings in the current local frame.



The account class is finally instantiated via assignment.

>>> Account = make account_class()

Then, an account instance is created via the new message, which requires a name to go
with the newly created account.

>>> kirk account = Account|[ 'new']('Kirk")

Then, get messages passed to kirk account retrieve properties and methods. Methods
can be called to update the balance of the account.

>>> kirk account['get']('holder')
'"Kirk'

>>> kirk account['get']('interest')
0.02

>>> kirk account[ 'get']('deposit') (20)
20

>>> kirk account['get']('withdraw')(5)
15

As with the Python object system, setting an attribute of an instance does not change the
corresponding attribute of its class.

>>> kirk account[ 'set']('interest', 0.04)
>>> Account[ 'get']('interest')
0.02

Inheritance. We can create a subclass checkingaccount by overloading a subset of the
class attributes. In this case, we change the withdraw method to impose a fee, and we
reduce the interest rate.

>>> def make_ checking account class():
"""Return the CheckingAccount class, which imposes a $1 withdrawal fee.
interest = 0.01
withdraw fee =1
def withdraw(self, amount):
fee = self['get']('withdraw fee')
return Account[ 'get']('withdraw') (self, amount + fee)
return make class(locals(), Account)

womnn

In this implementation, we call the withdraw function of the base class account from the
withdraw function of the subclass, as we would in Python's built-in object system. We can
create the subclass itself and an instance, as before.

>>> CheckingAccount = make_ checking account_class()
>>> jack acct = CheckingAccount[ 'new']('Spock')

Deposits behave identically, as does the constructor function. withdrawals impose the $1
fee from the specialized withdraw method, and interest has the new lower value from

CheckingAccount.



>>> jack acct['get']('interest')

0.01

>>> jack _acct['get']('deposit') (20)
20

>>> jack acct['get']('withdraw') (5)
14

Our object system built upon dictionaries is quite similar in implementation to the built-in
object system in Python. In Python, an instance of any user-defined class has a special
attribute __dict__ that stores the local instance attributes for that object in a dictionary,
much like our attributes dictionary. Python differs because it distinguishes certain special
methods that interact with built-in functions to ensure that those functions behave
correctly for arguments of many different types. Functions that operate on different types
are the subject of the next section.

Continue: 2.7 Object Abstraction
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2.7 Object Abstraction

The object system allows programmers to build and use abstract data representations
efficiently. It is also designed to allow multiple representations of abstract data to coexist in
the same program.

A central concept in object abstraction is a generic function, which is a function that can
accept values of multiple different types. We will consider three different techniques for
implementing generic functions: shared interfaces, type dispatching, and type coercion. In
the process of building up these concepts, we will also discover features of the Python
object system that support the creation of generic functions.

2.7.1 String Conversion

To represent data effectively, an object value should behave like the kind of data it is
meant to represent, including producing a string representation of itself. String
representations of data values are especially important in an interactive language such as
Python that automatically displays the string representation of the values of expressions in
an interactive session.

String values provide a fundamental medium for communicating information among
humans. Sequences of characters can be rendered on a screen, printed to paper, read
aloud, converted to braille, or broadcast as Morse code. Strings are also fundamental to
programming because they can represent Python expressions.

Python stipulates that all objects should produce two different string representations: one
that is human-interpretable text and one that is a Python-interpretable expression. The
constructor function for strings, str, returns a human-readable string. Where possible, the
repr function returns a Python expression that evaluates to an equal object. The docstring
for repr explains this property:

repr (object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The result of calling repr on the value of an expression is what Python prints in an
interactive session.

>>> 12el2
12000000000000.0

>>> print(repr(1l2el2))
12000000000000.0

In cases where no representation exists that evaluates to the original value, Python
typically produces a description surrounded by angled brackets.

>>> repr(min)
'<built-in function min>'



The str constructor often coincides with repr, but provides a more interpretable text
representation in some cases. For instance, we see a difference between str and repr with
dates.

>>> from datetime import date
>>> tues = date(2011, 9, 12)
>>> repr(tues)
'datetime.date(2011, 9, 12)'
>>> str(tues)

'2011-09-12"

Defining the repr function presents a new challenge: we would like it to apply correctly to
all data types, even those that did not exist when repr was implemented. We would like it
to be a generic or polymorphic function, one that can be applied to many (poly) different
forms (morph) of data.

The object system provides an elegant solution in this case: the repr function always
invokes a method called __ repr on its argument.

>>> tues. repr ()
'datetime.date(2011, 9, 12)'

By implementing this same method in user-defined classes, we can extend the applicability
of repr t0 any class we create in the future. This example highlights another benefit of dot
expressions in general, that they provide a mechanism for extending the domain of existing
functions to new object types.

The str constructor is implemented in a similar manner: it invokes a method called  str
on its argument.

>>> tues. str ()
'2011-09-12"

These polymorphic functions are examples of a more general principle: certain functions
should apply to multiple data types. Moreover, one way to create such a function is to use
a shared attribute name with a different definition in each class.

2.7.2 Special Methods

In Python, certain special names are invoked by the Python interpreter in special
circumstances. For instance, the __init  method of a class is automatically invoked
whenever an object is constructed. The _ str method is invoked automatically when
printing, and _ repr _is invoked in an interactive session to display values.

There are special names for many other behaviors in Python. Some of those used most
commonly are described below.

True and false values. We saw previously that numbers in Python have a truth value; more
specifically, O is a false value and all other numbers are true values. In fact, all objects in
Python have a truth value. By default, objects of user-defined classes are considered to be



true, but the special _bool method can be used to override this behavior. If an object
defines the _ boo1_ method, then Python calls that method to determine its truth value.

As an example, suppose we want a bank account with 0 balance to be false. We can add a
__bool _method to the account class to create this behavior.

>>> Account._bool_ = lambda self: self.balance != 0

We can call the bool constructor to see the truth value of an object, and we can use any
object in a boolean context.

>>> bool (Account( 'Jack'))

False

>>> if not Account('Jack'):
print('Jack has nothing')

Jack has nothing

Sequence operations. We have seen that we can call the 1en function to determine the
length of a sequence.

>>> len('Go Bears!')
9

The 1en function invokes the __1en  method of its argument to determine its length. All
built-in sequence types implement this method.

>>> 'Go Bears!'._ len_ ()
9

Python uses a sequence's length to determine its truth value, if it does not provide a
__bool _method. Empty sequences are false, while non-empty sequences are true.

>>> bool('")

False

>>> bool([])

False

>>> bool('Go Bears!')
True

The getitem method is invoked by the element selection operator, but it can also be
invoked directly.

>>> 'Go Bears!'[3]

IBI

>>> 'Go Bears!'._ getitem_  (3)
IBI

Callable objects. In Python, functions are first-class objects, so they can be passed around
as data and have attributes like any other object. Python also allows us to define objects
that can be "called" like functions by includinga __ca11__ method. With this method, we
can define a class that behaves like a higher-order function.



As an example, consider the following higher-order function, which returns a function that
adds a constant value to its argument.

>>> def make adder(n):
def adder(k):
return n + k
return adder

>>> add_three = make_ adder(3)
>>> add_three(4)
7

We can create an adder class that definesa cai1 method to provide the same
functionality.

>>> class Adder(object):
def init (self, n):
self.n = n
def call (self, k):
return self.n + k

>>> add_three obj = Adder(3)
>>> add_three obj(4)
7

Here, the adder class behaves like the make adder higher-order function, and the
add_three obj Object behaves like the add_three function. We have further blurred the line
between data and functions.

Arithmetic. Special methods can also define the behavior of built-in operators applied to
user-defined objects. In order to provide this generality, Python follows specific protocols
to apply each operator. For example, to evaluate expressions that contain the + operator,
Python checks for special methods on both the left and right operands of the expression.
First, Python checks for an __add__ method on the value of the left operand, then checks
foran __radd _method on the value of the right operand. If either is found, that method is
invoked with the value of the other operand as its argument. Some examples are given in
the following sections. For readers interested in further details, the Python documentation
describes the exhaustive set of method names for operators. Dive into Python 3 has a
chapter on special method names that describes how many of these special method
names are used.

2.7.3 Multiple Representations

Abstraction barriers allow us to separate the use and representation of data. However, in
large programs, it may not always make sense to speak of "the underlying representation”
for a data type in a program. For one thing, there might be more than one useful
representation for a data object, and we might like to design systems that can deal with
multiple representations.

To take a simple example, complex numbers may be represented in two almost equivalent
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ways: in rectangular form (real and imaginary parts) and in polar form (magnitude and
angle). Sometimes the rectangular form is more appropriate and sometimes the polar form
is more appropriate. Indeed, it is perfectly plausible to imagine a system in which complex
numbers are represented in both ways, and in which the functions for manipulating
complex numbers work with either representation. We implement such a system below. As
a side note, we are developing a system that performs arithmetic operations on complex
numbers as a simple but unrealistic example of a program that uses generic operations. A
complex number type is actually built into Python, but for this example we will implement
our own.

The idea of allowing for multiple representations of data arises regularly. Large software
systems are often designed by many people working over extended periods of time,
subject to requirements that change over time. In such an environment, it is simply not
possible for everyone to agree in advance on choices of data representation. In addition to
the data-abstraction barriers that isolate representation from use, we need abstraction
barriers that isolate different design choices from each other and permit different choices
to coexist in a single program.

We will begin our implementation at the highest level of abstraction and work towards
concrete representations. A complex Number is a number, and numbers can be added or
multiplied together. How numbers can be added or multiplied is abstracted by the method
names add and mul.

>>> class Number:
def add (self, other):
return self.add(other)
def mul (self, other):
return self.mul(other)

This class requires that Number objects have add and mul methods, but does not define
them. Moreover, it does not have an __init  method. The purpose of Number is not to be
instantiated directly, but instead to serve as a superclass of various specific number
classes. Our next task is to define add and mu1 appropriately for complex numbers.

A complex number can be thought of as a point in two-dimensional space with two
orthogonal axes, the real axis and the imaginary axis. From this perspective, the complex
number ¢ = real + imag * i (Wherei * i = -1) can be thought of as the point in the
plane whose horizontal coordinate is real and whose vertical coordinate is imag. Adding
complex numbers involves adding their respective real and imag coordinates.

When multiplying complex numbers, it is more natural to think in terms of representing a
complex number in polar form, as a magnitude and an angle. The product of two complex
numbers is the vector obtained by stretching one complex number by a factor of the length
of the other, and then rotating it through the angle of the other.

The complex class inherits from Nnumber and describes arithmetic for complex numbers.

>>> class Complex(Number):
def add(self, other):
return ComplexRI(self.real + other.real, self.imag + other.imag)
def mul(self, other):
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magnitude = self.magnitude * other.magnitude
return ComplexMA(magnitude, self.angle + other.angle)

This implementation assumes that two classes exist for complex numbers, corresponding
to their two natural representations:

® complexRI constructs a complex number from real and imaginary parts.
® complexMA constructs a complex number from a magnitude and angle.

Interfaces. Object attributes, which are a form of message passing, allows different data
types to respond to the same message in different ways. A shared set of messages that
elicit similar behavior from different classes is a powerful method of abstraction. An
interface is a set of shared attribute names, along with a specification of their behavior. In
the case of complex numbers, the interface needed to implement arithmetic consists of
four attributes: real, imag, magnitude, and angle.

For complex arithmetic to be correct, these attributes must be consistent. That is, the
rectangular coordinates (real, imag) and the polar coordinates (magnitude, angle) must
describe the same point on the complex plane. The complex class implicitly defines this
interface by determining how these attributes are used to add and mul complex numbers.

Properties. The requirement that two or more attribute values maintain a fixed relationship
with each other is a new problem. One solution is to store attribute values for only one
representation and compute the other representation whenever it is needed.

Python has a simple feature for computing attributes on the fly from zero-argument
functions. The eproperty decorator allows functions to be called without call expression
syntax (parentheses following an expression). The complexRrI class stores real and imag
attributes and computes magnitude and angle on demand.

>>> from math import atan2
>>> class ComplexRI(Complex):
def init (self, real, imag):
self.real = real
self.imag = imag
@property
def magnitude(self):
return (self.real ** 2 + self.imag ** 2) ** 0.5
@property
def angle(self):
return atan2(self.imag, self.real)
def repr (self):
return 'ComplexRI({0:g}, {l1:g})'.format(self.real, self.imag)

As a result of this implementation, all four attributes needed for complex arithmetic can be
accessed without any call expressions, and changes to real or imag are reflected in the
magnitude and angle.

>>> ri = ComplexRI(5, 12)
>>> ri.real

5

>>> ri.magnitude

13.0



>>> ri.real = 9
>>> ri.real

9

>>> ri.magnitude
15.0

Similarly, the complexMa class stores magnitude and angle, but computes real and imag
whenever those attributes are looked up.

>>> from math import sin, cos, pi
>>> class ComplexMA (Complex):
def init (self, magnitude, angle):
self.magnitude = magnitude
self.angle = angle
@property
def real(self):
return self.magnitude * cos(self.angle)
@property
def imag(self):
return self.magnitude * sin(self.angle)
def repr (self):
return 'ComplexMA({0:g}, {l:g} * pi)'.format(self.magnitude, self.angle/pi)

Changes to the magnitude or angle are reflected immediately in the rea1l and imag
attributes.

>>> ma = ComplexMA(2, pi/2)
>>> ma.imag

2.0

>>> ma.angle = pi

>>> ma.real

-2.0

Our implementation of complex numbers is now complete. Either class implementing
complex numbers can be used for either argument in either arithmetic function in complex.

>>> from math import pi

>>> ComplexRI(1l, 2) + ComplexMA(2, pi/2)
ComplexRI(1, 4)

>>> ComplexRI(0, 1) * ComplexRI(0, 1)
ComplexMA(1l, 1 * pi)

The interface approach to encoding multiple representations has appealing properties. The
class for each representation can be developed separately; they must only agree on the
names of the attributes they share, as well as any behavior conditions for those attributes.
The interface is also additive. If another programmer wanted to add a third representation
of complex numbers to the same program, they would only have to create another class
with the same attributes.

Multiple representations of data are closely related to the idea of data abstraction with
which we began this chapter. Using data abstraction, we were able to change the
implementation of a data type without changing the meaning of the program. With
interfaces and message passing, we can have multiple different representations within the



same program. In both cases, a set of names and corresponding behavior conditions
define the abstraction that enables this flexibility.

2.7.4 Generic Functions

Generic functions are methods or functions that apply to arguments of different types. We
have seen many examples already. The complex.add method is generic, because it can take
either a complexRI Or complexMa as the value for other. This flexibility was gained by
ensuring that both complexr1 and complexma share an interface. Using interfaces and
message passing is only one of several methods used to implement generic functions. We
will consider two others in this section: type dispatching and type coercion.

Suppose that, in addition to our complex number classes, we implement a Rational class
to represent fractions exactly. The add and mul methods express the same computations
as the add_rational and mul_rational functions from earlier in the chapter.

>>> from fractions import gcd
>>> class Rational (Number):
def init (self, numer, denom):
g = gcd(numer, denom)
self.numer = numer // g
self.denom = denom // g
def  repr (self):
return 'Rational ({0}, {1})'.format(self.numer, self.denom)
def add(self, other):
nx, dx = self.numer, self.denom
ny, dy = other.numer, other.denom
return Rational(nx * dy + ny * dx, dx * dy)
def mul(self, other):
numer = self.numer * other.numer
denom = self.denom * other.denom
return Rational (numer, denom)

We have implemented the interface of the number superclass by including add and mu1
methods. As a result, we can add and multiply rational numbers using familiar operators.

>>> Rational(2, 5) + Rational(l, 10)
Rational(1l, 2)
>>> Rational(l, 4) * Rational(2, 3)
Rational(l, 6)

However, we cannot yet add a rational number to a complex number, although in
mathematics such a combination is well-defined. We would like to introduce this cross-
type operation in some carefully controlled way, so that we can support it without seriously
violating our abstraction barriers. There is a tension between the outcomes we desire: we
would like to be able to add a complex number to a rational number, and we would like to
do so using a generic __add__ method that does the right thing with all numeric types. At
the same time, we would like to separate the concerns of complex numbers and rational
numbers whenever possible, in order to maintain a modular program.

Type dispatching. One way to implement cross-type operations is to select behavior based



on the types of the arguments to a function or method. The idea of type dispatching is to
write functions that inspect the type of arguments they receive, then execute code that is
appropriate for those types.

The built-in function isinstance takes an object and a class. It returns true if the object has
a class that either is or inherits from the given class.

>>> ¢ = ComplexRI(1l, 1)

>>> isinstance(c, ComplexRI)
True

>>> isinstance(c, Complex)
True

>>> isinstance(c, ComplexMA)
False

A simple example of type dispatching is an is_real function that uses a different
implementation for each type of complex number.

>>> def is real(c):
"""Return whether c is a real number with no imaginary part.
if isinstance(c, ComplexRI):
return c.imag ==
elif isinstance(c, ComplexMA):
return c.angle % pi == 0

mwomon

>>> is real(ComplexRI(1l, 1))
False

>>> is real(ComplexMA(2, pi))
True

Type dispatching is not always performed using isinstance. For arithmetic, we will give a
type_tag attribute to rRational and complex instances that has a string value. When two
values x and y have the same type_tag, then we can combine them directly with x.add(y).
If not, we need a cross-type operation.

>>> Rational.type tag = 'rat'’

>>> Complex.type tag = 'com'

>>> Rational(2, 5).type_tag == Rational(l, 2).type tag

True

>>> ComplexRI(1l, 1).type tag == ComplexMA(2, pi/2).type_tag
True

>>> Rational(2, 5).type_tag == ComplexRI(1l, 1).type tag
False

To combine complex and rational numbers, we write functions that rely on both of their
representations simultaneously. Below, we rely on the fact that a rational can be
converted approximately to a f1oat value that is a real number. The result can be
combined with a complex number.

>>> def add_complex and rational(c, r):
return ComplexRI(c.real + r.numer/r.denom, c.imag)

Multiplication involves a similar conversion. In polar form, a real number in the complex



plane always has a positive magnitude. The angle 0 indicates a positive number. The angle
pi indicates a negative number.

>>> def mul_complex and_rational(c, r):
r magnitude, r angle = r.numer/r.denom, 0
if r magnitude < 0:
r magnitude, r angle = -r magnitude, pi
return ComplexMA(c.magnitude * r magnitude, c.angle + r_angle)

Both addition and multiplication are commutative, so swapping the argument order can
use the same implementations of these cross-type operations.

>>> def add_rational and complex(r, c):
return add _complex and_rational(c, r)

>>> def mul rational and complex(r, c):
return mul_ complex and_rational(c, r)

The role of type dispatching is to ensure that these cross-type operations are used at
appropriate times. Below, we rewrite the Nnumber superclass to use type dispatching for its
__add__and __mul _ methods.

We use the type_ tag attribute to distinguish types of arguments. One could directly use the
built-in isinstance method as well, but tags simplify the implementation. Using type tags
also illustrates that type dispatching is not necessarily linked to the Python object system,
but instead a general technique for creating generic functions over heterogeneous
domains.

The _add method considers two cases. First, if two arguments have the same type tag,
then it assumes that ada method of the first can take the second as an argument.
Otherwise, it checks whether a dictionary of cross-type implementations, called adders,
contains a function that can add arguments of those type tags. If there is such a function,
the cross_apply method finds and applies it. The __mul  method has a similar structure.

>>> class Number:
def @ add_ (self, other):
if self.type tag == other.type tag:
return self.add(other)
elif (self.type tag, other.type tag) in self.adders:
return self.cross_apply(other, self.adders)
def mul (self, other):
if self.type tag == other.type tag:
return self.mul (other)
elif (self.type tag, other.type tag) in self.multipliers:
return self.cross_apply(other, self.multipliers)
def cross_apply(self, other, cross fns):
cross_fn = cross_fns[ (self.type tag, other.type tag)]
return cross_fn(self, other)

adders = {("com", "rat"): add complex and rational,
("rat", "com"): add rational_ and complex}
multipliers = {("com", "rat"): mul complex and rational,

("rat", "com"): mul_rational_ and_complex}



In this new definition of the number class, all cross-type implementations are indexed by
pairs of type tags in the adders and multipliers dictionaries.

This dictionary-based approach to type dispatching is extensible. New subclasses of
Number could install themselves into the system by declaring a type tag and adding cross-
type operations t0 Number.adders and Number.multipliers. They could also define their own
adders and multipliers in a subclass.

While we have introduced some complexity to the system, we can now mix types in
addition and multiplication expressions.

>>> ComplexRI(1.5, 0) + Rational(3, 2)
ComplexRI(3, 0)

>>> Rational(-1, 2) * ComplexMA(4, pi/2)
ComplexMA(2, 1.5 * pi)

Coercion. In the general situation of completely unrelated operations acting on completely
unrelated types, implementing explicit cross-type operations, cumbersome though it may
be, is the best that one can hope for. Fortunately, we can sometimes do better by taking
advantage of additional structure that may be latent in our type system. Often the different
data types are not completely independent, and there may be ways by which objects of
one type may be viewed as being of another type. This process is called coercion. For
example, if we are asked to arithmetically combine a rational number with a complex
number, we can view the rational number as a complex number whose imaginary part is
zero. After doing so, we can use complex.add and Complex.mul to combine them.

In general, we can implement this idea by designing coercion functions that transform an
object of one type into an equivalent object of another type. Here is a typical coercion
function, which transforms a rational number to a complex number with zero imaginary
part:

>>> def rational to complex(r):
return ComplexRI(r.numer/r.denom, 0)

The alternative definition of the number class performs cross-type operations by attempting
to coerce both arguments to the same type. The coercions dictionary indexes all possible
coercions by a pair of type tags, indicating that the corresponding value coerces a value of
the first type to a value of the second type.

It is not generally possible to coerce an arbitrary data object of each type into all other
types. For example, there is no way to coerce an arbitrary complex number to a rational
number, so there will be no such conversion implementation in the coercions dictionary.

The coerce method returns two values with the same type tag. It inspects the type tags of
its arguments, compares them to entries in the coercions dictionary, and converts one
argument to the type of the other using coerce to. Only one entry in coercions is necessary
to complete our cross-type arithmetic system, replacing the four cross-type functions in
the type-dispatching version of Number.

>>> class Number:
def @ add_ (self, other):



X, y = self.coerce(other)
return x.add(y)
def mul (self, other):
x, y = self.coerce(other)
return x.mul(y)
def coerce(self, other):
if self.type tag == other.type tag:
return self, other
elif (self.type tag, other.type tag) in self.coercions:
return (self.coerce to(other.type tag), other)
elif (other.type tag, self.type tag) in self.coercions:
return (self, other.coerce_to(self.type tag))
def coerce to(self, other tag):
coercion_fn = self.coercions|[(self.type tag, other tag)]
return coercion fn(self)
coercions = {('rat', 'com'): rational to_ complex}

This coercion scheme has some advantages over the method of defining explicit cross-
type operations. Although we still need to write coercion functions to relate the types, we
need to write only one function for each pair of types rather than a different function for
each set of types and each generic operation. What we are counting on here is the fact
that the appropriate transformation between types depends only on the types themselves,
not on the particular operation to be applied.

Further advantages come from extending coercion. Some more sophisticated coercion
schemes do not just try to coerce one type into another, but instead may try to coerce two
different types each into a third common type. Consider a rhombus and a rectangle:
neither is a special case of the other, but both can be viewed as quadrilaterals. Another
extension to coercion is iterative coercion, in which one data type is coerced into another
via intermediate types. Consider that an integer can be converted into a real number by
first converting it into a rational number, then converting that rational number into a real
number. Chaining coercion in this way can reduce the total number of coercion functions
that are required by a program.

Despite its advantages, coercion does have potential drawbacks. For one, coercion
functions can lose information when they are applied. In our example, rational numbers are
exact representations, but become approximations when they are converted to complex
numbers.

Some programming languages have automatic coercion systems built in. In fact, early
versions of Python had a __ coerce  special method on objects. In the end, the complexity
of the built-in coercion system did not justify its use, and so it was removed. Instead,
particular operators apply coercion to their arguments as needed.

Continue: 2.8 Efficiency
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2.8 Efficiency

Decisions of how to represent and process data are often influenced by the efficiency of
alternatives. Efficiency refers to the computational resources used by a representation or
process, such as how much time and memory are required to compute the result of a
function or represent an object. These amounts can vary widely depending on the details
of an implementation.

2.8.1 Measuring Efficiency

Measuring exactly how long a program requires to run or how much memory it consumes
is challenging, because the results depend upon many details of how a computer is
configured. A more reliable way to characterize the efficiency of a program is to measure
how many times some event occurs, such as a function call.

Let's return to our first tree-recursive function, the £ib function for computing numbers in
the Fibonacci sequence.

>>> def fib(n):
if n == 0:
return 0
if n == 1:
return 1
return fib(n-2) + fib(n-1)

>>> fib(5)
5

Consider the pattern of computation that results from evaluating £ib(6), depicted below.
To compute fib(5), we compute fib(3) and fib(4). To compute fib(3), we compute
fib(1) and £ib(2). In general, the evolved process looks like a tree. Each blue dot
indicates a completed computation of a Fibonacci number in the traversal of this tree.
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This function is instructive as a prototypical tree recursion, but it is a terribly inefficient way
to compute Fibonacci numbers because it does so much redundant computation. The
entire computation of £ib(3) is duplicated.

We can measure this inefficiency. The higher-order count function returns an equivalent
function to its argument that also maintains a cal1l_count attribute. In this way, we can
inspect just how many times £ib is called.

>>> def count(f):
def counted(*args):
counted.call count += 1
return f(*args)
counted.call count = 0
return counted

By counting the number of calls to £ib, we see that the calls required grows faster than the
Fibonacci numbers themselves. This rapid expansion of calls is characteristic of tree-
recursive functions.

>>> fib = count(fib)
>>> fib(19)

4181

>>> fib.call count
13529

Space. To understand the space requirements of a function, we must specify generally
how memory is used, preserved, and reclaimed in our environment model of computation.
In evaluating an expression, the interpreter preserves all active environments and all values



and frames referenced by those environments. An environment is active if it provides the
evaluation context for some expression being evaluated. An environment becomes inactive
whenever the function call for which its first frame was created finally returns.

For example, when evaluating £ib, the interpreter proceeds to compute each value in the
order shown previously, traversing the structure of the tree. To do so, it only needs to keep
track of those nodes that are above the current node in the tree at any point in the
computation. The memory used to evaluate the rest of the branches can be reclaimed
because it cannot affect future computation. In general, the space required for tree-
recursive functions will be proportional to the maximum depth of the tree.

The diagram below depicts the environment created by evaluating £ib(3). In the process
of evaluating the return expression for the initial application of £ib, the expression fib(n-2)
is evaluated, yielding a value of 0. Once this value is computed, the corresponding
environment frame (grayed out) is no longer needed: it is not part of an active environment.
Thus, a well-designed interpreter can reclaim the memory that was used to store this
frame. On the other hand, if the interpreter is currently evaluating £ib(n-1), then the
environment created by this application of £ib (in which n is 2) is active. In turn, the
environment originally created to apply £ib to 3 is active because its return value has not
yet been computed.

def fib(n): if n == 0: return 0 if n == 1: return 1 return fib(n-2) + fib(n-1) result = fib(2)

The higher-order count_frames function tracks open_count, the number of calls to the
function £ that have not yet returned. The max_count attribute is the maximum value ever
attained by open_count, and it corresponds to the maximum number of frames that are ever
simultaneously active during the course of computation.

>>> def count frames(f):

def counted(*args):
counted.open_count += 1
counted.max_count = max(counted.max count, counted.open count)
result = f(*args)
counted.open _count -= 1
return result

counted.open_count = 0

counted.max_count = 0

return counted

>>> fib = count frames(£fib)
>>> fib(19)

4181

>>> fib.open count
0

>>> fib.max_count
19

>>> fib(24)

46368

>>> fib.max_count
24

To summarize, the space requirement of the £ib function, measured in active frames, is
one less than the input, which tends to be small. The time requirement measured in total



recursive calls is larger than the output, which tends to be huge.

2.8.2 Memoization

Tree-recursive computational processes can often be made more efficient through
memoization, a powerful technique for increasing the efficiency of recursive functions that
repeat computation. A memoized function will store the return value for any arguments it
has previously received. A second call to £ib(25) would not re-compute the return value
recursively, but instead return the existing one that has already been constructed.

Memoization can be expressed naturally as a higher-order function, which can also be
used as a decorator. The definition below creates a cache of previously computed results,
indexed by the arguments from which they were computed. The use of a dictionary
requires that the argument to the memoized function be immutable.

>>> def memo(f):
cache = {}
def memoized(n):
if n not in cache:
cache[n] = f(n)
return cache[n]
return memoized

If we apply memo to the recursive computation of Fibonacci numbers, a new pattern of
computation evolves, depicted below.
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In this computation of £ib(5), the results for £ib(2) and £ib(3) are reused when computing



fib(4) on the right branch of the tree. As a result, much of the tree-recursive computation
is not required at all.

Using count, we can see that the £ib function is actually only called once for each unique
input to fib.

>>> counted fib = count(fib)
>>> fib = memo(counted fib)
>>> fib(19)

4181

>>> counted_fib.call_ count
20

>>> fib(34)

5702887

>>> counted_fib.call_ count
35

2.8.3 Orders of Growth

Processes can differ massively in the rates at which they consume the computational
resources of space and time, as the previous examples illustrate. However, exactly
determining just how much space or time will be used when calling a function is a very
difficult task that depends upon many factors. A useful way to analyze a process is to
categorize it along with a group of processes that all have similar requirements. A useful
categorization is the order of growth of a process, which expresses in simple terms how
the resource requirements of a process grow as a function of the input.

As an introduction to orders of growth, we will analyze the function count_factors below,
which counts the number of integers that evenly divide an input n. The function attempts to
divide n by every integer less than or equal to its square root. The implementation takes
advantage of the fact that if $k$ divides $n$ and $k < \sqrt{n}$ , then there is another
factor $j = n / k$ such that $j > \sqrt{n}$.

from math import sqgrt def count_factors(n): sqrt_n = sqrt(n) k, factors = 1, 0 while k <
sgrt_n: if n % k == 0: factors += 2 k += 1 if k * k == n: factors += 1 return factors result =
count_factors(576)

How much time is required to evaluate count_factors? The exact answer will vary on
different machines, but we can make some useful general observations about the amount
of computation involved. The total number of times this process executes the body of the
while statement is the greatest integer less than $\sqrt{n}$. The statements before and
after this while statement are executed exactly once. So, the total number of statements
executed is $w \cdot \sqrt{n} + v$, where $w$ is the number of statements in the while
body and $v$ is the number of statements outside of the while statement. Although it isn't
exact, this formula generally characterizes how much time will be required to evaluate
count_factors as a function of the input n.

A more exact description is difficult to obtain. The constants $w$ and $v$ are not constant
at all, because the assignment statements to factors are sometimes executed but
sometimes not. An order of growth analysis allows us to gloss over such details and



instead focus on the general shape of growth. In particular, the order of growth for
count_factors expresses in precise terms that the amount of time required to compute
count_factors (n) scales at the rate $\sqrt{n}$, within a margin of some constant factors.

Theta Notation. Let $n$ be a parameter that measures the size of the input to some
process, and let $R(n)$ be the amount of some resource that the process requires for an
input of size $n$. In our previous examples we took $n$ to be the number for which a
given function is to be computed, but there are other possibilities. For instance, if our goal
is to compute an approximation to the square root of a number, we might take $n$ to be
the number of digits of accuracy required.

$R(n)$ might measure the amount of memory used, the number of elementary machine
steps performed, and so on. In computers that do only a fixed number of steps at a time,
the time required to evaluate an expression will be proportional to the number of
elementary steps performed in the process of evaluation.

We say that $R(n)$ has order of growth $\Theta(f(n))$, written $R(n) = \Theta(f(n))$
(pronounced "theta of $f(n)$"), if there are positive constants $k_1$ and $k_2$ independent
of $n$ such that

\begin{equation*} k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n) \end{equation*}

for any value of $n$ larger than some minimum $m$. In other words, for large $n$, the
value $R(n)$ is always sandwiched between two values that both scale with $f(n)$:

e A lower bound $k_1 \cdot f(n)$ and
e An upper bound $k_2 \cdot f(n)$

We can apply this definition to show that the number of steps required to evaluate
count_factors(n) grows as $\Theta(\sgrt{n})$ by inspecting the function body.

First, we choose $k_1=1$ and $m=0$, so that the lower bound states that
count_factors(n) requires at least $1 \cdot \sqrt{n}$ steps for any $n>0$. There are at
least 4 lines executed outside of the while statement, each of which takes at least 1 step to
execute. There are at least two lines executed within the while body, along with the while
header itself. All of these require at least one step. The while body is evaluated at least
$\sqrt{n}-1$ times. Composing these lower bounds, we see that the process requires at
least $4 + 3 \cdot (\sqrt{n}-1)$ steps, which is always larger than $k_1 \cdot \sqrt{n}$.

Second, we can verify the upper bound. We assume that any single line in the body of
count_factors requires at most p steps. This assumption isn't true for every line of Python,
but does hold in this case. Then, evaluating count_factors(n) can require at most $p \cdot
(5 + 4 \sqrt{n})$, because there are 5 lines outside of the while statement and 4 within
(including the header). This upper bound holds even if every if header evaluates to true.
Finally, if we choose $k_2=5p$, then the steps required is always smaller than $k_2 \cdot
\sqgrt{n}$. Our argument is complete.

2.8.4 Example: Exponentiation

Consider the problem of computing the exponential of a given number. We would like a
function that takes as arguments a base b and a positive integer exponent n and computes



$b~An$. One way to do this is via the recursive definition
\begin{align*} bAn &= b \cdot bA{n-1} \\ bA0 &= 1 \end{align*}

which translates readily into the recursive function

>>> def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)

This is a linear recursive process that requires $\Theta(n)$ steps and $\Theta(n)$ space.
Just as with factorial, we can readily formulate an equivalent linear iteration that requires a
similar number of steps but constant space.

>>> def exp iter(b, n):
result =1
for _ in range(n):
result = result * b
return result

We can compute exponentials in fewer steps by using successive squaring. For instance,
rather than computing $b/8$ as

\begin{equation*} b \cdot (b \cdot (b \cdot (b \cdot (b \cdot (b \cdot (b \cdot b)))))
\end{equation*}

we can compute it using three multiplications:

\begin{align*} bA2 &= b \cdot b \\ b4 &= b/2 \cdot b2 \\ b8 &= b”4 \cdot b4
\end{align*}

This method works fine for exponents that are powers of 2. We can also take advantage of
successive squaring in computing exponentials in general if we use the recursive rule

\begin{equation*} bAn = \begin{cases} (b {\frac{1}{2} n})"2 & \text{if $n$ is even} \\ b \cdot
bA{n-1} & \text{if $n$ is odd} \end{cases} \end{equation*}

We can express this method as a recursive function as well:

>>> def square(x):
return x*x

>>> def fast exp(b, n):
if n ==
return 1
if n & 2 ==
return square(fast exp(b, n//2))
else:
return b * fast exp(b, n-1)

>>> fast _exp(2, 100)
1267650600228229401496703205376

The process evolved by fast_exp grows logarithmically with n in both space and number of



steps. To see this, observe that computing $b/{2n}$ using fast_exp requires only one
more multiplication than computing $b”n$. The size of the exponent we can compute
therefore doubles (approximately) with every new multiplication we are allowed. Thus, the
number of multiplications required for an exponent of n grows about as fast as the
logarithm of n base 2. The process has $\Theta(\log n)$ growth. The difference between
$\Theta(\log n)$ growth and $\Theta(n)$ growth becomes striking as $n$ becomes large.
For example, fast_exp for n of 1000 requires only 14 multiplications instead of 1000.

2.8.5 Growth Categories

Orders of growth are designed to simplify the analysis and comparison of computational
processes. Many different processes can all have equivalent orders of growth, which
indicates that they scale in similar ways. It is an essential skill of a computer scientist to
know and recognize common orders of growth and identify processes of the same order.

Constants. Constant terms do not affect the order of growth of a process. So, for instance,
$\Theta(n)$ and $\Theta(500 \cdot n)$ are the same order of growth. This property follows
from the definition of theta notation, which allows us to choose arbitrary constants $k_1$
and $k_29% (such as $\frac{1}{500}$) for the upper and lower bounds. For simplicity,
constants are always omitted from orders of growth.

Logarithms. The base of a logarithm does not affect the order of growth of a process. For
instance, $\log_2 n$ and $\log_{10} n$ are the same order of growth. Changing the base of
a logarithm is equivalent to multiplying by a constant factor.

Nesting. When an inner computational process is repeated for each step in an outer
process, then the order of growth of the entire process is a product of the number of steps
in the outer and inner processes.

For example, the function overiap below computes the number of elements in list a that
also appear in list b.

>>> def overlap(a, b):
count = 0
for item in a:
if item in b:
count += 1
return count

>>> overlap([l, 3, 2, 2, 5, 11, [5, 4, 2])
3

The in operator for lists requires $\Theta(n)$ time, where $n$ is the length of the list b. It is
applied $\Theta(m)$ times, where $m$ is the length of the list a. The item in b expression
is the inner process, and the for item in a loop is the outer process. The total order of
growth for this function is $\Theta(m \cdot n)$.

Lower-order terms. As the input to a process grows, the fastest growing part of a
computation dominates the total resources used. Theta notation captures this intuition. In a
sum, all but the fastest growing term can be dropped without changing the order of



growth.

For instance, consider the one_more function that returns how many elements of a list a are
one more than some other element of a. That is, in the list (3, 14, 15, 9], the element 15
is one more than 14, soO one_more Will return 1.

>>> def one more(a):
return overlap([x-1 for x in a], a)

>>> one_more([3, 14, 15, 9])
1

There are two parts to this computation: the list comprehension and the call to overiap. For
a list a of length $n$, list comprehension requires $\Theta(n)$ steps, while the call to
overlap requires $\Theta(n"2)$ steps. The sum of steps is $\Theta(n + nA2)$, but this is not
the simplest way of expressing the order of growth.

$\Theta(n"2 + k \cdot n)$ and $\Theta(n"2)$ are equivalent for any constant $k$ because
the $n”2$ term will eventually dominate the total for any $k$. The fact that bounds must
hold only for $n$ greater than some minimum $m$ establishes this equivalence. For
simplicity, lower-order terms are always omitted from orders of growth, and so we will
never see a sum within a theta expression.

Common categories. Given these equivalence properties, a small set of common
categories emerge to describe most computational processes. The most common are
listed below from slowest to fastest growth, along with descriptions of the growth as the
input increases. Examples for each category follow.

Category Theta Notation Growth Description Example

Constant $\Theta(1)$ Growth is independent of the input  abs

Logarithmic  $\Theta(\log{n})$ Multiplying input increments fast exp
resources

Linear $\Theta(n)$ Incrementing input increments exp
resources

Quadratic $\Theta(n"2)$ Incrementing input adds n one_more
resources

Exponential $\Theta(b”n)$ Incrementing input multiplies fib
resources

Other categories exist, such as the $\Theta(\sqrt{n})$ growth of count_factors. However,
these categories are particularly common.

Exponential growth describes many different orders of growth, because changing the base
$b$ does affect the order of growth. For instance, the number of steps in our tree-recursive



Fibonacci computation £ib grows exponentially in its input $n$. In particular, one can show
that the nth Fibonacci number is the closest integer to

\begin{equation*} \frac{\phi*{n-2}}{\sqrt{5}} \end{equation*}
where $\phi$ is the golden ratio:
\begin{equation*} \phi = \frac{1 + \sqrt{5}}{2} \approx 1.6180 \end{equation*}

We also stated that the number of steps scales with the resulting value, and so the tree-
recursive process requires $\Theta(\phi*n)$ steps, a function that grows exponentially with

$n$.

Continue: 2.9 Recursive Objects
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2.9 Recursive Objects

Objects can have other objects as attribute values. When an object of some class has an
attribute value of that same class, it is a recursive object.

2.9.1 Linked List Class

A linked list, introduced earlier in this chapter, is composed of a first element and the rest
of the list. The rest of a linked list is itself a linked list — a recursive definition. The empty
list is a special case of a linked list that has no first element or rest. A linked list is a
sequence: it has a finite length and supports element selection by index.

We can now implement a class with the same behavior. In this version, we will define its
behavior using special method names that allow our class to work with the built-in 1en
function and element selection operator (square brackets or operator.getitem) in Python.
These built-in functions invoke special method names of a class: length is computed by
__len__ and element selection is computed by _ getitem . The empty linked list is
represented by an empty tuple, which has length 0 and no elements.

>>> class Link:
"""A linked list with a first element and the rest.
empty = ()
def init (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest
def getitem (self, i):
if i ==

mwomnn

return self.first
else:
return self.rest[i-1]
def _ len_ (self):
return 1 + len(self.rest)

>>> s = Link(3, Link(4, Link(5)))
>>> len(s)

3

>>> s[1]

4

The definitions of _1en. _and _getitem _ are in fact recursive. The built-in Python
function 1en invokes a method called __1en_ when applied to a user-defined object
argument. Likewise, the element selection operator invokes a method called  getitem .
Thus, bodies of these two methods will call themselves indirectly. For __1en |, the base
case is reached when self.rest evaluates to the empty tuple, Link.empty, Which has a
length of O.

The built-in isinstance function returns whether the first argument has a type that is or
inherits from the second argument. isinstance(rest, Link) IS true if rest is a Link instance
or an instance of some sub-class of r.ink.



Our implementation is complete, but an instance of the rink class is currently difficult to
inspect. To help with debugging, we can also define a function to convert a Link to a string
expression.

>>> def link expression(s):
"""Return a string that would evaluate to s.

mwoon

if s.rest is Link.empty:

rest = "'
else:

rest = ', ' 4+ link expression(s.rest)
return 'Link({0}{1})'.format(s.first, rest)

>>> link_expression(s)
'Link (3, Link(4, Link(5)))'

This way of displaying an rink is so convenient that we would like to use it whenever an
Link instance is displayed. We can ensure this behavior by setting the 1ink_expression
function as the value of the special class attribute _ repr . Python displays instances of
user-defined classes by invoking their __repr  method.

>>> Link. repr = link expression
>>> g
Link(3, Link(4, Link(5)))

The vink class has the closure property. Just as an element of a list can itself be a list, a
Link can contain a Link as its first element.

>>> s first = Link(s, Link(6))
>>> s _first
Link(Link(3, Link(4, Link(5))), Link(6))

The s_first linked list has only two elements, but its first element is a linked list with three
elements.

>>> len(s_first)

2

>>> len(s_first[0])
3

>>> s first[0][2]

5

Recursive functions are particularly well-suited to manipulate linked lists. For instance, the
recursive extend_1link function builds a linked list containing the elements of one Link
instance s followed by the elements of another nink instance t. Installing this function as
the add method of the rLink class emulates the addition behavior of a built-in list.

>>> def extend link(s, t):
if s is Link.empty:
return t
else:
return Link(s.first, extend link(s.rest, t))
>>> extend link(s, s)



Link(3, Link(4, Link(5, Link(3, Link(4, Link(5))))))

>>> Link._ add__ = extend link
>>> s + s
Link(3, Link(4, Link(5, Link(3, Link(4, Link(5))))))

Rather than list comprehensions, one linked list can be generated from another using two
higher-order functions: map 1ink and filter link. The map_ link function defined below
applies a function £ to each element of a linked list s and constructs a linked list containing
the results.

>>> def map link(f, s):
if s is Link.empty:
return s
else:
return Link(f(s.first), map link(f, s.rest))
>>> map_ link(square, s)
Link(9, Link(16, Link(25)))

The filter 1ink function returns a linked list containing all elements of a linked list s for
which £ returns a true value. The combination of map 1ink and filter 1link can express the
same logic as a list comprehension.

>>> def filter link(f, s):
if s is Link.empty:
return s
else:
filtered = filter link(f, s.rest)
if f(s.first):
return Link(s.first, filtered)
else:
return filtered
>>> odd = lambda x: x % 2 ==
>>> map_ link(square, filter link(odd, s))
Link(9, Link(25))
>>> [square(x) for x in [3, 4, 5] if odd(x)]
[9, 25]

The join_1ink function recursively constructs a string that contains the elements of a
linked list seperated by some separator string. The result is much more compact than the
output of 1ink_expression.

>>> def join link(s, separator):
if s is Link.empty:
return ""
elif s.rest is Link.empty:
return str(s.first)
else:
return str(s.first) + separator + join link(s.rest, separator)
>>> join link(s, ", ")
'3, 4, 5'

Recursive Construction. Linked lists are particularly useful when constructing sequences
incrementally, a situation that arises often in recursive computations.



The count_partitions function from Chapter 1 counted the number of ways to partition an
integer n using parts up to size m via a tree-recursive process. With sequences, we can also
enumerate these partitions explicitly using a similar process.

We follow the same recursive analysis of the problem as we did while counting: partitioning
n using integers up to m involves either

1. partitioning n-m using integers up to m, or
2. partitioning n using integers up to m-1.

For base cases, we find that 0 has an empty partition, while partitioning a negative integer
or using parts smaller than 1 is impossible.

>>> def partitions(n, m):
"""Return a linked list of partitions of n using parts of up to m.
FEach partition is represented as a linked list.
if n ==
return Link(Link.empty) # A list containing the empty partition
elif n < 0 or m ==
return Link.empty
else:
using m = partitions(n-m, m)
with m = map link(lambda s: Link(m, s), using m)
without m = partitions(n, m-1)
return with m + without m

In the recursive case, we construct two sublists of partitions. The first uses m, and so we
add m to each element of the result using m to form with m.

The result of partitions is highly nested: a linked list of linked lists. Using join_1ink with
appropriate separators, we can display the partitions in a human-readable manner.

>>> def print partitions(n, m):
lists = partitions(n, m)
strings = map_ link(lambda s: join link(s, " + "), lists)
print(join link(strings, "\n"))

>>> print partitions(6, 4)
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2.9.2 Tree Class

Trees can also be represented by instances of user-defined classes, rather than nested
instances of built-in sequence types. A tree is any data structure that has as an attribute a



sequence of branches that are also trees.

Internal values. Previously, we defined trees in such a way that all values appeared at the
leaves of the tree. It is also common to define trees that have internal values at the roots of
each subtree. An internal value is called an 1abel in the tree. The Tree class below
represents such trees, in which each tree has a sequence of branches that are also trees.

>>> class Tree:
def init (self, label, branches=()):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = branches
def repr (self):
if self.branches:
return 'Tree({0}, {1})'.format(self.label, repr(self.branches))
else:
return 'Tree({0})'.format(repr(self.label))
def is leaf(self):
return not self.branches

The Tree class can represent, for instance, the values computed in an expression tree for
the recursive implementation of £ib, the function for computing Fibonacci numbers. The
function £ib_tree(n) below returns a tree that has the nth Fibonacci number as its 1abel
and a trace of all previously computed Fibonacci numbers within its branches.

>>> def fib tree(n):

if n == 1:
return Tree(0)

elif n ==
return Tree(l)

else:
left = fib tree(n-2)
right = fib_tree(n-1)
return Tree(left.label + right.label, (left, right))

>>> fib tree(5)
Tree(3, (Tree(l, (Tree(0), Tree(l))), Tree(2, (Tree(l), Tree(l, (Tree(0), Tree(l)))))))

Trees represented in this way are also processed using recursive functions. For example,
we can sum the labels of a tree. As a base case, we return that an empty branch has no
labels.

>>> def sum labels(t):
"""Sum the labels of a Tree instance, which may be None.
return t.label + sum([sum labels(b) for b in t.branches])

"o

>>> sum_ labels(fib tree(5))
10

We can also apply memo to construct a Fibonacci tree, where repeated subtrees are only
created once by the memoized version of fib_tree, but are used multiple times as
branches of different larger trees.



>>> fib tree = memo(fib_ tree)

>>> big fib_tree = fib_tree(35)

>>> big fib tree.label

5702887

>>> big fib tree.branches[0] is big fib tree.branches[1l].branches[1]
True

>>> sum_ labels = memo(sum_ labels)

>>> sum labels(big fib tree)

142587180

The amount of computation time and memory saved by memoization in these cases is
substantial. Instead of creating 18,454,929 different instances of the Tree class, we now
create only 35.

2.9.3 Sets

In addition to the list, tuple, and dictionary, Python has a fourth built-in container type
called a set. Set literals follow the mathematical notation of elements enclosed in braces.
Duplicate elements are removed upon construction. Sets are unordered collections, and so
the printed ordering may differ from the element ordering in the set literal.

>>s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

Python sets support a variety of operations, including membership tests, length
computation, and the standard set operations of union and intersection

>>> 3 in s

True

>>> len(s)

4

>>> s.union({1l, 5})

{1, 2, 3, 4, 5}

>>> s.intersection({6, 5, 4, 3})
{3, 4}

In addition t0 union and intersection, Python sets support several other methods. The
predicates isdisjoint, issubset, and issuperset provide set comparison. Sets are
mutable, and can be changed one element at a time using add, remove, discard, and pop.
Additional methods provide multi-element mutations, such as clear and update. The
Python documentation for sets should be sufficiently intelligible at this point of the course
to fill in the details.

Implementing sets. Abstractly, a set is a collection of distinct objects that supports
membership testing, union, intersection, and adjunction. Adjoining an element and a set
returns a new set that contains all of the original set's elements along with the new
element, if it is distinct. Union and intersection return the set of elements that appear in
either or both sets, respectively. As with any data abstraction, we are free to implement
any functions over any representation of sets that provides this collection of behaviors.
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In the remainder of this section, we consider three different methods of implementing sets
that vary in their representation. We will characterize the efficiency of these different
representations by analyzing the order of growth of set operations. We will use our Link
and Tree classes from earlier in this section, which allow for simple and elegant recursive
solutions for elementary set operations.

Sets as unordered sequences. One way to represent a set is as a sequence in which no
element appears more than once. The empty set is represented by the empty sequence.
Membership testing walks recursively through the list.

>>> def empty(s):
return s is Link.empty

>>> def set contains(s, v):
"""Return True if and only if set s contains v.
if empty(s):
return False
elif s.first == v:
return True
else:
return set_contains(s.rest, V)
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>>> s = Link(4, Link(1l, Link(5)))
>>> set contains(s, 2)

False

>>> set contains(s, 5)

True

This implementation of set_contains requires $\Theta(n)$ time on average to test
membership of an element, where $n$ is the size of the set s. Using this linear-time
function for membership, we can adjoin an element to a set, also in linear time.

>>> def adjoin_set(s, Vv):
"""Return a set containing all elements of s and element v."""
if set_contains(s, Vv):
return s
else:

return Link(v, s)

>>> t = adjoin_set(s, 2)
>>> t
Link(2, Link(4, Link(1l, Link(5))))

In designing a representation, one of the issues with which we should be concerned is
efficiency. Intersecting two sets set1 and set2 also requires membership testing, but this
time each element of set1 must be tested for membership in set2, leading to a quadratic
order of growth in the number of steps, $\Theta(n~2)$, for two sets of size $n$.

>>> def intersect set(setl, set2):
"""Return a set containing all elements common to setl and set2.
return keep if link(setl, lambda v: set contains(set2, v))

mwoon

>>> intersect set(t, apply to all link(s, square))



Link(4, Link(1l))

When computing the union of two sets, we must be careful not to include any element
twice. The union_set function also requires a linear number of membership tests, creating
a process that also includes $\Theta(n"2)$ steps.

>>> def union set(setl, set2):

womon

Return a set containing all elements either in setl or set2."""
setl not set2 = keep_if link(setl, lambda v: not set_contains(set2, v))
return extend link(setl not set2, set2)

>>> union_set(t, s)
Link(2, Link(4, Link(1l, Link(5))))

Sets as ordered sequences. One way to speed up our set operations is to change the
representation so that the set elements are listed in increasing order. To do this, we need
some way to compare two objects so that we can say which is bigger. In Python, many
different types of objects can be compared using < and > operators, but we will
concentrate on numbers in this example. We will represent a set of numbers by listing its
elements in increasing order.

One advantage of ordering shows up in set_contains: In checking for the presence of an
object, we no longer have to scan the entire set. If we reach a set element that is larger
than the item we are looking for, then we know that the item is not in the set:

>>> def set_contains(s, v):
if empty(s) or s.first > v:
return False
elif s.first == v:
return True
else:
return set_contains(s.rest, V)

>>> u = Link(1l, Link(4, Link(5)))
>>> set contains(u, 0)

False

>>> set contains(u, 4)

True

How many steps does this save? In the worst case, the item we are looking for may be the
largest one in the set, so the number of steps is the same as for the unordered
representation. On the other hand, if we search for items of many different sizes we can
expect that sometimes we will be able to stop searching at a point near the beginning of
the list and that other times we will still need to examine most of the list. On average we
should expect to have to examine about half of the items in the set. Thus, the average
number of steps required will be about $\frac{n}{2}$. This is still $\Theta(n)$ growth, but it
does save us some time in practice over the previous implementation.

We can obtain a more impressive speedup by re-implementing intersect_set. In the
unordered representation, this operation required $\Theta(n"2)$ steps because we
performed a complete scan of set2 for each element of set1. But with the ordered
representation, we can use a more clever method. We iterate through both sets



simultaneously, tracking an element e1 in set1 and e2 in set2. When e1 and e2 are equal,
we include that element in the intersection.

Suppose, however, that e1 is less than e2. Since e2 is smaller than the remaining elements
of set2, we can immediately conclude that e1 cannot appear anywhere in the remainder of
set2 and hence is not in the intersection. Thus, we no longer need to consider e1; we
discard it and proceed to the next element of set1. Similar logic advances through the
elements of set2 when e2 < el. Here is the function:

>>> def intersect set(setl, set2):
if empty(setl) or empty(set2):
return Link.empty
else:
el, e2 = setl.first, set2.first
if el == e2:
return Link(el, intersect set(setl.rest, set2.rest))
elif el < e2:
return intersect_ set(setl.rest, set2)
elif e2 < el:
return intersect_ set(setl, set2.rest)

>>> intersect set(s, s.rest)
Link(4, Link(5))

To estimate the number of steps required by this process, observe that in each step we
shrink the size of at least one of the sets. Thus, the number of steps required is at most the
sum of the sizes of set1 and set2, rather than the product of the sizes, as with the
unordered representation. This is $\Theta(n)$ growth rather than $\Theta(n"2)$ -- a
considerable speedup, even for sets of moderate size. For example, the intersection of two
sets of size 100 will take around 200 steps, rather than 10,000 for the unordered
representation.

Adjunction and union for sets represented as ordered sequences can also be computed in
linear time. These implementations are left as an exercise.

Sets as binary search trees. We can do better than the ordered-list representation by
arranging the set elements in the form of a tree with exactly two branches. The entry of the
root of the tree holds one element of the set. The entries within the 1eft branch include all
elements smaller than the one at the root. Entries in the right branch include all elements
greater than the one at the root. The figure below shows some trees that represent the set
{1, 3, 5, 7, 9, 11}. The same set may be represented by a tree in a number of different
ways. In all binary search trees, all elements in the 1eft branch be smaller than the entry at
the root, and that all elements in the right subtree be larger.
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The advantage of the tree representation is this: Suppose we want to check whether a
value v is contained in a set. We begin by comparing v with entry. If v is less than this, we
know that we need only search the 1eft subtree; if v is greater, we need only search the
right subtree. Now, if the tree is "balanced," each of these subtrees will be about half the
size of the original. Thus, in one step we have reduced the problem of searching a tree of
size $n$ to searching a tree of size $\frac{n}{2}$. Since the size of the tree is halved at each
step, we should expect that the number of steps needed to search a tree grows as
$\Theta(\log n)$. For large sets, this will be a significant speedup over the previous
representations. This set_contains function exploits the ordering structure of the tree-
structured set.

>>> def set_contains(s, v):
if s is None:
return False
elif s.entry ==
return True
elif s.entry < v:
return set contains(s.right, v)
elif s.entry > v:
return set contains(s.left, v)

Adjoining an item to a set is implemented similarly and also requires $\Theta(\log n)$ steps.
To adjoin a value v, we compare v with entry to determine whether v should be added to
the right or to the 1eft branch, and having adjoined v to the appropriate branch we piece
this newly constructed branch together with the original entry and the other branch. If v is
equal to the entry, we just return the node. If we are asked to adjoin v to an empty tree, we
generate a Tree that has v as the entry and empty right and 1eft branches. Here is the
function:

>>> def adjoin _set(s, Vv):
if s is None:
return Tree(V)
elif s.entry == v:
return s
elif s.entry < v:
return Tree(s.entry, s.left, adjoin set(s.right, v))
elif s.entry > v:
return Tree(s.entry, adjoin set(s.left, v), s.right)

>>> adjoin_set(adjoin_set(adjoin_set(Nomne, 2), 3), 1)
Tree(2, Tree(l), Tree(3))



Our claim that searching the tree can be performed in a logarithmic number of steps rests
on the assumption that the tree is "balanced," i.e., that the left and the right subtree of
every tree have approximately the same number of elements, so that each subtree
contains about half the elements of its parent. But how can we be certain that the trees we
construct will be balanced? Even if we start with a balanced tree, adding elements with
adjoin_set may produce an unbalanced result. Since the position of a newly adjoined
element depends on how the element compares with the items already in the set, we can
expect that if we add elements "randomly" the tree will tend to be balanced on the
average.

But this is not a guarantee. For example, if we start with an empty set and adjoin the
numbers 1 through 7 in sequence we end up with a highly unbalanced tree in which all the
left subtrees are empty, so it has no advantage over a simple ordered list. One way to solve
this problem is to define an operation that transforms an arbitrary tree into a balanced tree
with the same elements. We can perform this transformation after every few adjoin_set
operations to keep our set in balance.

Intersection and union operations can be performed on tree-structured sets in linear time
by converting them to ordered lists and back. The details are left as an exercise.

Python set implementation. The set type that is built into Python does not use any of these
representations internally. Instead, Python uses a representation that gives constant-time
membership tests and adjoin operations based on a technique called hashing, which is a
topic for another course. Built-in Python sets cannot contain mutable data types, such as
lists, dictionaries, or other sets. To allow for nested sets, Python also includes a built-in
immutable frozenset class that shares methods with the set class but excludes mutation
methods and operators.
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Chapter 3: Interpreting Computer Programs

3.1 Introduction

Chapters 1 and 2 describe the close connection between two fundamental elements of
programming: functions and data. We saw how functions can be manipulated as data
using higher-order functions. We also saw how data can be endowed with behavior using
message passing and an object system. We have also studied techniques for organizing
large programs, such as functional abstraction, data abstraction, class inheritance, and
generic functions. These core concepts constitute a strong foundation upon which to build
modular, maintainable, and extensible programs.

This chapter focuses on the third fundamental element of programming: programs
themselves. A Python program is just a collection of text. Only through the process of
interpretation do we perform any meaningful computation based on that text. A
programming language like Python is useful because we can define an interpreter, a
program that carries out Python's evaluation and execution procedures. It is ho
exaggeration to regard this as the most fundamental idea in programming, that an
interpreter, which determines the meaning of expressions in a programming language, is
just another program.

To appreciate this point is to change our images of ourselves as programmers. We come
to see ourselves as designers of languages, rather than only users of languages designed
by others.

3.1.1 Programming Languages

Programming languages vary widely in their syntactic structures, features, and domain of
application. Among general purpose programming languages, the constructs of function
definition and function application are pervasive. On the other hand, powerful languages
exist that do not include an object system, higher-order functions, assignment, or even
control constructs such as while and for statements. As an example of a powerful
language with a minimal set of features, we will introduce the Scheme programming
language. The subset of Scheme introduced in this text does not allow mutable values at
all.

In this chapter, we study the design of interpreters and the computational processes that
they create when executing programs. The prospect of designing an interpreter for a
general programming language may seem daunting. After all, interpreters are programs
that can carry out any possible computation, depending on their input. However, many
interpreters have an elegant common structure: two mutually recursive functions. The first
evaluates expressions in environments; the second applies functions to arguments.

These functions are recursive in that they are defined in terms of each other: applying a
function requires evaluating the expressions in its body, while evaluating an expression
may involve applying one or more functions.


https://en.wikipedia.org/wiki/Scheme_(programming_language)
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3.2 Functional Programming

The software running on any modern computer is written in a variety of programming
languages. There are physical languages, such as the machine languages for particular
computers. These languages are concerned with the representation of data and control in
terms of individual bits of storage and primitive machine instructions. The machine-
language programmer is concerned with using the given hardware to erect systems and
utilities for the efficient implementation of resource-limited computations. High-level
languages, erected on a machine-language substrate, hide concerns about the
representation of data as collections of bits and the representation of programs as
sequences of primitive instructions. These languages have means of combination and
abstraction, such as function definition, that are appropriate to the larger-scale
organization of software systems.

In this section, we introduce a high-level programming language that encourages a
functional style. Our object of study, a subset of the Scheme language, employs a very
similar model of computation to Python's, but uses only expressions (no statements),
specializes in symbolic computation, and employs only immutable values.

Scheme is a dialect of Lisp, the second-oldest programming language that is still widely
used today (after Fortran). The community of Lisp programmers has continued to thrive for
decades, and new dialects of Lisp such as Clojure have some of the fastest growing
communities of developers of any modern programming language. To follow along with the
examples in this text, you can download a Scheme interpreter.

3.2.1 Expressions

Scheme programs consist of expressions, which are either call expressions or special
forms. A call expression consists of an operator expression followed by zero or more
operand sub-expressions, as in Python. Both the operator and operand are contained
within parentheses:

(quotient 10 2)

Scheme exclusively uses prefix notation. Operators are often symbols, such as + and .
Call expressions can be nested, and they may span more than one line:

(+ (* 3 5) (- 10 6))
(+ (* 3
(+ (* 2 4)
(+35)))
(+ (- 10 7)

6))

As in Python, Scheme expressions may be primitives or combinations. Number literals are
primitives, while call expressions are combined forms that include arbitrary sub-
expressions. The evaluation procedure of call expressions matches that of Python: first the
operator and operand expressions are evaluated, and then the function that is the value of
the operator is applied to the arguments that are the values of the operands.
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The it expression in Scheme is a special form, meaning that while it looks syntactically like
a call expression, it has a different evaluation procedure. The general form of an it
expression is:

(if <predicate> <consequent> <alternative>)

To evaluate an if expression, the interpreter starts by evaluating the <predicate> part of
the expression. If the <predicate> evaluates to a true value, the interpreter then evaluates
the <consequent> and returns its value. Otherwise it evaluates the <alternative> and
returns its value.

Numerical values can be compared using familiar comparison operators, but prefix
notation is used in this case as well:

(>= 2 1)

The boolean values #t (or true) and #£ (or false) in Scheme can be combined with boolean
special forms, which have evaluation procedures similar to those in Python.

e (and <el> ... <en>) The interpreter evaluates the expressions <e> one at
a time, in left-to-right order. If any <e> evaluates to false, the value of the
and expression is false, and the rest of the <e>'s are not evaluated. If all
<e>'s evaluate to true values, the value of the and expression is the value

of the last one.
® (or <el> ... <en>) Ihe interpreter evaluates the expressions <e> one at a

time, in left-to-right order. If any <e> evaluates to a true value, that value is
returned as the value of the or expression, and the rest of the <e>'s are
not evaluated. If all <e>'s evaluate to faise, the value of the or expression

iS false.
* (not <e>) The value of a not expression is true when the expression <e>
evaluates to false, and false otherwise.

3.2.2 Definitions

Values can be named using the define special form:

(define pi 3.14)

(* pi 2)

New functions (called procedures in Scheme) can be defined using a second version of the
define special form. For example, to define squaring, we write:

(define (square x) (* X X))

The general form of a procedure definition is:

(define (<name> <formal parameters>) <body>)

The <name> is a symbol to be associated with the procedure definition in the environment.
The <formal parameters> are the names used within the body of the procedure to refer to
the corresponding arguments of the procedure. The <body> is an expression that will yield
the value of the procedure application when the formal parameters are replaced by the



actual arguments to which the procedure is applied. The <name> and the <formal
parameters> are grouped within parentheses, just as they would be in an actual call to the
procedure being defined.

Having defined square, we can now use it in call expressions:

(square 21)
(square (+ 2 5))
(square (square 3))

User-defined functions can take multiple arguments and include special forms:

(define (average x V)
(/ (+ xy) 2))
(average 1 3)
(define (abs x)
(if (< x 0)
(- x)
X))
(abs -3)

Scheme supports local definitions with the same lexical scoping rules as Python. Below,
we define an iterative procedure for computing square roots using nested definitions and
recursion:
(define (sqrt x)
(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))
(define (improve guess)
(average guess (/ x guess)))
(define (sgrt-iter guess)
(if (good-enough? guess)
guess
(sqrt-iter (improve guess))))
(sgrt-iter 1.0))
(sgrt 9)

Anonymous functions are created using the 1ambda special form. Lambda is used to create
procedures in the same way as define, except that no name is specified for the procedure:

(lambda (<formal-parameters>) <body>)

The resulting procedure is just as much a procedure as one that is created using define.
The only difference is that it has not been associated with any name in the environment. In
fact, the following expressions are equivalent:

(define (plusd4 x) (+ x 4))
(define plus4 (lambda (x) (+ x 4)))

Like any expression that has a procedure as its value, a lambda expression can be used as
the operator in a call expression:

((lambda (x y 2) (+ x y (square z))) 1 2 3)

3.2.3 Compound values

Pairs are built into the Scheme language. For historical reasons, pairs are created with the



cons built-in function, and the elements of a pair are accessed with car and cdr:

(define x (cons 1 2))
X

(car x)

(cdr x)

Recursive lists are also built into the language, using pairs. A special value denoted nil or
' () represents the empty list. A recursive list value is rendered by placing its elements
within parentheses, separated by spaces:

(cons 1

(cons 2

(cons 3
(cons 4 nil))))

(list 1 2 3 4)
(define one-through-four (list 1 2 3 4))
(car one-through-four)
(cdr one-through-four)
(car (cdr one-through-four))
(cons 10 one-through-four)
(cons 5 one-through-four)

Whether a list is empty can be determined using the primitive nu112 predicate. Using it, we
can define the standard sequence operations for computing 1ength and selecting
elements:

(define (length items)
(if (null? items)

0

(+ 1 (length (cdr items)))))
(define (getitem items n)

(if (= n 0)

(car items)

(getitem (cdr items) (- n 1))))
(define squares (list 1 4 9 16 25))
(length squares)

(getitem squares 3)

3.2.4 Symbolic Data

All the compound data objects we have used so far were constructed ultimately from
numbers. One of Scheme's strengths is working with arbitrary symbols as data.

In order to manipulate symbols we need a new element in our language: the ability to quote
a data object. Suppose we want to construct the list (a b). We can't accomplish this with
(list a b), because this expression constructs a list of the values of a and b rather than
the symbols themselves. In Scheme, we refer to the symbols a and b rather than their
values by preceding them with a single quotation mark:

(define a 1)

(define b 2)

(list a b)

(list 'a 'b)

(list 'a b)



In Scheme, any expression that is not evaluated is said to be quoted. This notion of
quotation is derived from a classic philosophical distinction between a thing, such as a
dog, which runs around and barks, and the word "dog" that is a linguistic construct for
designating such things. When we use "dog" in quotation marks, we do not refer to some
dog in particular but instead to a word. In language, quotation allow us to talk about
language itself, and so it is in Scheme:

(list 'define 'list)

Quotation also allows us to type in compound objects, using the conventional printed
representation for lists:

(car '(a b c))
(cdr '(a b c))

The full Scheme language contains additional features, such as mutation operations,
vectors, and maps. However, the subset we have introduced so far provides a rich
functional programming language capable of implementing many of the ideas we have
discussed so far in this text.

3.2.5 Turtle graphics

The implementation of Scheme that serves as a companion to this text includes Turtle
graphics, an illustrating environment developed as part of the Logo language (another Lisp
dialect). This turtle begins in the center of a canvas, moves and turns based on
procedures, and draws lines behind it as it moves. While the turtle was invented to engage
children in the act of programming, it remains an engaging graphical tool for even
advanced programmers.

At any moment during the course of executing a Scheme program, the turtle has a position
and heading on the canvas. Single-argument procedures such as forward and right
change the position and heading of the turtle. Common procedures have abbreviations:
forward can also be called as £d, etc. The begin special form in Scheme allows a single
expression to include multiple sub-expressions. This form is useful for issuing multiple
commands:

> (define (repeat k fn) (if (> k 0)

(begin (fn) (repeat (- k 1) fn))
nil))
> (repeat 5
(lambda () (fd 100)
(repeat 5
(lambda () (fd 20) (rt 144)))

(rt 144)))
nil



The full repertoire of Turtle procedures is also built into Python as the turtle library module.

As a final example, Scheme can express recursive drawings using its turtle graphics in a
remarkably compact form. Sierpinski's triangle is a fractal that draws each triangle as three
neighboring triangles that have vertexes at the midpoints of the legs of the triangle that
contains them. It can be drawn to a finite recursive depth by this Scheme program:
> (define (repeat k fn)
(if (> k 0)
(begin (fn) (repeat (- k 1) fn))
nil))

> (define (tri fn)
(repeat 3 (lambda () (fn) (1t 120))))

> (define (sier d k)
(tri (lambda ()
(if (= k 1) (fd d) (leg d k)))))

> (define (leg d k)
(sier (/ d 2) (- k 1))

(penup)
(fd d)
(pendown) )

The triangle procedure is a general method for repeating a drawing procedure three times
with a left turn following each repetition. The sier procedure takes a length d and a
recursive depth k. It draws a plain triangle if the depth is 1, and otherwise draws a triangle
made up of calls to 1eg. The 1eg procedure draws a single leg of a recursive Sierpinski
triangle by a recursive call to sier that fills the first half of the length of the leg, then by
moving the turtle to the next vertex. The procedures penup and pendown stop the turtle from
drawing as it moves by lifting its pen up and the placing it down again. The mutual
recursion between sier and 1eg yields this result:

> (sier 400 6)


http://docs.python.org/py3k/library/turtle.html
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3.3 Exceptions

Programmers must be always mindful of possible errors that may arise in their programs.
Examples abound: a function may not receive arguments that it is designed to accept, a
necessary resource may be missing, or a connection across a network may be lost. When
designing a program, one must anticipate the exceptional circumstances that may arise
and take appropriate measures to handle them.

There is no single correct approach to handling errors in a program. Programs designed to
provide some persistent service like a web server should be robust to errors, logging them
for later consideration but continuing to service new requests as long as possible. On the
other hand, the Python interpreter handles errors by terminating immediately and printing
an error message, so that programmers can address issues as soon as they arise. In any
case, programmers must make conscious choices about how their programs should react
to exceptional conditions.

Exceptions, the topic of this section, provides a general mechanism for adding error-
handling logic to programs. Raising an exception is a technique for interrupting the normal
flow of execution in a program, signaling that some exceptional circumstance has arisen,
and returning directly to an enclosing part of the program that was designated to react to
that circumstance. The Python interpreter raises an exception each time it detects an error
in an expression or statement. Users can also raise exceptions with raise and assert
statements.

Raising exceptions. An exception is a object instance with a class that inherits, either
directly or indirectly, from the BaseException class. The assert statement introduced in
Chapter 1 raises an exception with the class assertionError. In general, any exception
instance can be raised with the raise statement. The general form of raise statements are
described in the Python docs. The most common use of raise constructs an exception
instance and raises it.

>>> raise Exception('An error occurred')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Exception: an error occurred

When an exception is raised, no further statements in the current block of code are
executed. Unless the exception is handled (described below), the interpreter will return
directly to the interactive read-eval-print loop, or terminate entirely if Python was started
with a file argument. In addition, the interpreter will print a stack backtrace, which is a
structured block of text that describes the nested set of active function calls in the branch
of execution in which the exception was raised. In the example above, the file name
<stdin> indicates that the exception was raised by the user in an interactive session, rather
than from code in a file.

Handling exceptions. An exception can be handled by an enclosing try statement. A try
statement consists of multiple clauses; the first begins with try and the rest begin with

except:


http://docs.python.org/py3k/reference/simple_stmts.html#raise

try:
<try suite>

except <exception class> as <name>:
<except suite>

The <try suite> is always executed immediately when the try statement is executed.
Suites of the except clauses are only executed when an exception is raised during the
course of executing the <try suite>. Each except clause specifies the particular class of
exception to handle. For instance, if the <exception class> IS AssertionError, then any
instance of a class inheriting from assertionError that is raised during the course of
executing the <try suite> will be handled by the following <except suite>. Within the
<except suite>, the identifier <name> is bound to the exception object that was raised, but
this binding does not persist beyond the <except suite>.

For example, we can handle a zerobivisionError exception using a try statement that
binds the name x to 0 when the exception is raised.

>>> try:

x = 1/0
except ZeroDivisionError as e:

print('handling a', type(e))
x =0

handling a <class 'ZeroDivisionError'>

>>> x

0

A try statement will handle exceptions that occur within the body of a function that is
applied (either directly or indirectly) within the <try suite>. When an exception is raised,
control jumps directly to the body of the <except suite> of the most recent try statement
that handles that type of exception.

>>> def invert(x):
result = 1/x # Raises a ZeroDivisionError if x is 0
print( 'Never printed if x is 0')
return result

>>> def invert safe(x):
try:
return invert(x)
except ZeroDivisionError as e:
return str(e)

>>> invert safe(2)
Never printed if x is 0
0.5

>>> invert safe(0)
'division by zero'

This example illustrates that the print expression in invert is never evaluated, and instead
control is transferred to the suite of the except clause in invert_safe. Coercing the
zeroDivisionError e tO a string gives the human-interpretable string returned by

invert safe! 'division by zero'.



3.3.1 Exception Objects

Exception objects themselves can have attributes, such as the error message stated in an
assert Statement and information about where in the course of execution the exception
was raised. User-defined exception classes can have additional attributes.

In Chapter 1, we implemented Newton's method to find the zeros of arbitrary functions.
The following example defines an exception class that returns the best guess discovered in
the course of iterative improvement whenever a valuetrror occurs. A math domain error (a
type of valueError) is raised when sqrt is applied to a negative number. This exception is
handled by raising an 1terimproveError that stores the most recent guess from Newton's
method as an attribute.

First, we define a new class that inherits from Exception.

>>> class IterImproveError (Exception):
def init (self, last_guess):
self.last guess = last_ guess

Next, we define a version of improve, our generic iterative improvement algorithm. This
version handles any valueError by raising an rterimproveError that stores the most recent
guess. As before, improve takes as arguments two functions, each of which takes a single
numerical argument. The update function returns new guesses, while the done function
returns a boolean indicating that improvement has converged to a correct value.

>>> def improve(update, done, guess=1, max_updates=1000):
k=0
try:
while not done(guess) and k < max updates:
guess = update(guess)
k=k +1
return guess
except ValueError:
raise IterImproveError (guess)

Finally, we define £ind_zero, which returns the result of improve applied to a Newton
update function returned by newton update, which is defined in Chapter 1 and requires no
changes for this example. This version of £ind_zero handles an 1terImproveError by
returning its last guess.

>>> def find zero(f, guess=1l):
def done(x):
return f(x) ==
try:
return improve(newton update(f), done, guess)
except IterImproveError as e:
return e.last guess

Consider applying £ind_zero to find the zero of the function $2x/2 + \sqrt{x}$. This
function has a zero at 0, but evaluating it on any negative number will raise a valueError.



Our Chapter 1 implementation of Newton's Method would raise that error and fail to return
any guess of the zero. Our revised implementation returns the last guess found before the
error.

>>> from math import sqrt
>>> find zero(lambda x: 2*x*x + sqrt(x))
-0.030211203830201594

Although this approximation is still far from the correct answer of 0, some applications
would prefer this coarse approximation to a valueError.

Exceptions are another technique that help us as programs to separate the concerns of our
program into modular parts. In this example, Python's exception mechanism allowed us to
separate the logic for iterative improvement, which appears unchanged in the suite of the
try clause, from the logic for handling errors, which appears in except clauses. We will also
find that exceptions are a useful feature when implementing interpreters in Python.

Continue: 3.4 Interpreters for Languages with Combination
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3.4 Interpreters for Languages with Combination

We now embark on a tour of the technology by which languages are established in terms
of other languages. Metalinguistic abstraction — establishing new languages — plays an
important role in all branches of engineering design. It is particularly important to computer
programming, because in programming not only can we formulate new languages but we
can also implement these languages by constructing interpreters. An interpreter for a
programming language is a function that, when applied to an expression of the language,
performs the actions required to evaluate that expression.

We will first define an interpreter for a language that is a limited subset of Scheme, called
Calculator. Then, we will develop a sketch of an interpreter for Scheme as a whole. The
interpreter we create will be complete in the sense that it will allow us to write fully general
programs in Scheme. To do so, it will implement the same environment model of
evaluation that we introduced for Python programs in Chapter 1.

Many of the examples in this section are contained in the companion Scheme-Syntax
Calculator example, as they are too complex to fit naturally in the format of this text.

3.4.1 A Scheme-Syntax Calculator

The Scheme-Syntax Calculator (or simply Calculator) is an expression language for the
arithmetic operations of addition, subtraction, multiplication, and division. Calculator
shares Scheme's call expression syntax and operator behavior. Addition (+) and
multiplication () operations each take an arbitrary number of arguments:

> (+1 2 3 4)
10

> (+)

0

> (¥ 1 2 3 4)
24

> (*)

1

Subtraction (-) has two behaviors. With one argument, it negates the argument. With at
least two arguments, it subtracts all but the first from the first. Division (/) has a similar pair
of two behaviors: compute the multiplicative inverse of a single argument or divide all but
the first into the first:

> (- 10 1 2 3)
4

> (- 3)

-3

(/ 15 12)
.25

(/ 30 5 2)

oV wV =V

(/ 10)
.1

A call expression is evaluated by evaluating its operand sub-expressions, then applying the


http://localhost:8080/examples/scalc/scalc.html

operator to the resulting arguments:

> (- 100 (* 7 (+ 8 (/ =12 =3))))
16.0

We will implement an interpreter for the Calculator language in Python. That is, we will
write a Python program that takes string lines as input and returns the result of evaluating
those lines as a Calculator expression. Our interpreter will raise an appropriate exception if
the calculator expression is not well formed.

3.4.2 Expression Trees

Until this point in the course, expression trees have been conceptual entities to which we
have referred in describing the process of evaluation; we have never before explicitly
represented expression trees as data in our programs. In order to write an interpreter, we
must operate on expressions as data.

A primitive expression is just a number or a string in Calculator: either an int or float Or an
operator symbol. All combined expressions are call expressions. A call expression is a
Scheme list with a first element (the operator) followed by zero or more operand
expressions.

Scheme Pairs. In Scheme, lists are nested pairs, but not all pairs are lists. To represent
Scheme pairs and lists in Python, we will define a class pair that is similar to the r1ist
class earlier in the chapter. The implementation appears in scheme_reader.

The empty list is represented by an object called ni1, which is an instance of the class nil.
We assume that only one ni1 instance will ever be created.

The pair class and nil object are Scheme values represented in Python. They have repr
strings that are Python expressions and str strings that are Scheme expressions.

>>> s = Pair(l, Pair(2, nil))
>>> s

Pair(l, Pair(2, nil))

>>> print(s)

(1 2)

They implement the basic Python sequence interface of length and element selection, as
well as a map method that returns a Scheme list.

>>> len(s)

2

>>> s[1]

2

>>> print(s.map(lambda x: x+4))
(5 6)

Nested Lists. Nested pairs can represent lists, but the elements of a list can also be lists
themselves. Pairs are therefore sufficient to represent Scheme expressions, which are in
fact nested lists.
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>>> expr = Pair('+', Pair(Pair('*', Pair(3, Pair(4, nil))), Pair(5, nil)))
>>> print (expr)

(+ (¥ 3 4) 35)

>>> print(expr.second.first)

(* 3 4)

>>> expr.second.first.second.first

3

This example demonstrates that all Calculator expressions are nested Scheme lists. Our
Calculator interpreter will read in nested Scheme lists, convert them into expression trees
represented as nested rair instances (Parsing expressions below), and then evaluate the
expression trees to produce values (Calculator evaluation below).

3.4.3 Parsing Expressions

Parsing is the process of generating expression trees from raw text input. A parser is a
composition of two components: a lexical analyzer and a syntactic analyzer. First, the
lexical analyzer partitions the input string into tokens, which are the minimal syntactic units
of the language such as names and symbols. Second, the syntactic analyzer constructs an
expression tree from this sequence of tokens. The sequence of tokens produced by the
lexical analyzer is consumed by the syntactic analyzer.

Lexical analysis. The component that interprets a string as a token sequence is called a
tokenizer or lexical analyzer. In our implementation, the tokenizer is a function called
tokenize_ line in scheme_tokens. Scheme tokens are delimited by white space,
parentheses, dots, or single quotation marks. Delimiters are tokens, as are symbols and
numerals. The tokenizer analyzes a line character by character, validating the format of
symbols and numerals.

Tokenizing a well-formed Calculator expression separates all symbols and delimiters, but
identifies multi-character numbers (e.g., 2.3) and converts them into numeric types.

>>> tokenize line('(+ 1 (* 2.3 45))")
['(II ‘+'l 1’ .(" |*'l 2'3’ 45’ I)'l ')I]

Lexical analysis is an iterative process, and it can be applied to each line of an input
program in isolation.

Syntactic analysis. The component that interprets a token sequence as an expression tree
is called a syntactic analyzer. Syntactic analysis is a tree-recursive process, and it must
consider an entire expression that may span multiple lines.

Syntactic analysis is implemented by the scheme read function in scheme_reader. It is tree-
recursive because analyzing a sequence of tokens often involves analyzing a subsequence
of those tokens into a subexpression, which itself serves as a branch (e.g., operand) of a
larger expression tree. Recursion generates the hierarchical structures consumed by the
evaluator.

The scheme_read function expects its input src to be a Butfer instance that gives access to
a sequence of tokens. A Buffer, defined in the buffer module, collects tokens that span
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multiple lines into a single object that can be analyzed syntactically.

>>> lines = ['(+ 1', ' (* 2.3 45)) ']

>>> expression = scheme read(Buffer(tokenize lines(lines)))

>>> expression

Pair('+', Pair(l, Pair(Pair('*', Pair(2.3, Pair(45, nil))), nil)))
>>> print(expression)

(+ 1 (* 2.3 45))

The scheme_read function first checks for various base cases, including empty input (which
raises an end-of-file exception, called eorerror in Python) and primitive expressions. A
recursive call to read_tail is invoked whenever a ( token indicates the beginning of a list.

The read_tail function continues to read from the same input src, but expects to be called
after a list has begun. Its base cases are an empty input (an error) or a closing parenthesis

that terminates the list. Its recursive call reads the first element of the list with scheme read,

reads the rest of the list with read_tail, and then returns a list represented as a pair.

This implementation of scheme read can read well-formed Scheme lists, which are all we
need for the Calculator language. Parsing dotted lists and quoted forms is left as an
exercise.

Informative syntax errors improve the usability of an interpreter substantially. The
SsyntaxError exceptions that are raised include a description of the problem encountered.

3.4.4 Calculator Evaluation

The scalc module implements an evaluator for the Calculator language. The calc_eval
function takes an expression as an argument and returns its value. Definitions of the helper
functions simplify, reduce, and as_scheme_ list appear in the model and are used below.

For Calculator, the only two legal syntactic forms of expressions are numbers and call
expressions, which are rair instances representing well-formed Scheme lists. Numbers
are self-evaluating; they can be returned directly from calc_eval. Call expressions require
function application.

>>> def calc_eval(exp):
"""Evaluate a Calculator expression.
if type(exp) in (int, float):
return simplify(exp)
elif isinstance(exp, Pair):

"wonon

arguments = exp.second.map(calc_eval)

return simplify(calc_apply(exp.first, arguments))
else:

raise TypeError(exp +

is not a number or call expression')

Call expressions are evaluated by first recursively mapping the calc_eval function to the
list of operands, which computes a list of arguments. Then, the operator is applied to those
arguments in a second function, calc_apply.

The Calculator language is simple enough that we can easily express the logic of applying
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each operator in the body of a single function. In calc_apply, each conditional clause
corresponds to applying one operator.

>>> def calc_apply(operator, args):
"""Apply the named operator to a list of args.
if not isinstance(operator, str):
raise TypeError(str(operator) + ' is not a symbol')
if operator == '+':
return reduce(add, args, 0)
elif operator == '-':
if len(args) ==
raise TypeError(operator +
elif len(args) ==
return -args.first
else:

"wonon

requires at least 1 argument')

return reduce(sub, args.second, args.first)
elif operator == '*':
return reduce(mul, args, 1)
elif operator == '/':
if len(args) ==
raise TypeError(operator + ' requires at least 1 argument')
elif len(args) ==
return 1l/args.first
else:
return reduce(truediv, args.second, args.first)
else:
raise TypeError (operator +

is an unknown operator')

Above, each suite computes the result of a different operator or raises an appropriate
TypeError When the wrong number of arguments is given. The calc_apply function can be
applied directly, but it must be passed a list of values as arguments rather than a list of
operand expressions.

>>> calc_apply('+', as_scheme list(1l, 2, 3))

6

>>> calc_apply('-', as_scheme list(10, 1, 2, 3))

4

>>> calc_apply('*', nil)

1

>>> calc_apply('*', as_scheme list(1l, 2, 3, 4, 5))
120

>>> calc_apply('/', as_scheme 1list(40, 5))

8.0

The role of calc_eval is to make proper calls to calc_apply by first computing the value of
operand sub-expressions before passing them as arguments to calc_apply. Thus,
calc_eval can accept a nested expression.

>>> print(exp)

(+ (* 3 4) 5)

>>> calc_eval(exp)
17

The structure of calc_eval is an example of dispatching on type: the form of the



expression. The first form of expression is a number, which requires no additional
evaluation step. In general, primitive expressions that do not require an additional
evaluation step are called self-evaluating. The only self-evaluating expressions in our
Calculator language are numbers, but a general programming language might also include
strings, boolean values, etc.

Read-eval-print loops. A typical approach to interacting with an interpreter is through a
read-eval-print loop, or REPL, which is a mode of interaction that reads an expression,
evaluates it, and prints the result for the user. The Python interactive session is an example
of such a loop.

An implementation of a REPL can be largely independent of the interpreter it uses. The
function read eval print loop below buffers input from the user, constructs an expression
using the language-specific scheme_read function, then prints the result of applying
calc_eval to that expression.

>>> def read eval print loop():
"""Run a read-eval-print loop for calculator.
while True:
src = buffer input()
while src.more_on_line:
expression = scheme read(src)
print(calc_eval(expression))

muon

This version of read_eval print_ loop contains all of the essential components of an
interactive interface. An example session would look like:

(* 1 2 3)
(+)

(+ 2 (/ 4 8))
.5
(+ 2 2) (* 3 3)

V o & VMV OV oV

(+ 1
(- 23)
(* 4 2.5))
-12

This loop implementation has no mechanism for termination or error handling. We can
improve the interface by reporting errors to the user. We can also allow the user to exit the
loop by signalling a keyboard interrupt (control-c on UNIX) or end-of-file exception
(contro1-p on UNIX). To enable these improvements, we place the original suite of the
while statement within a try statement. The first except clause handles syntaxError and
ValueError exceptions raised by scheme read as well as TypeError and zerobDivisionError
exceptions raised by calc_eval.

>>> def read eval print loop():
"""Run a read-eval-print loop for calculator.
while True:
try:
src = buffer input()

muon



while src.more on line:
expression = scheme read(src)
print(calc_eval(expression))
except (SyntaxError, TypeError, ValueError, ZeroDivisionError) as err:

print(type(err). name  + , err)

except (KeyboardInterrupt, EOFError): # <Control>-D, etc.
print('Calculation completed.')
return

This loop implementation reports errors without exiting the loop. Rather than exiting the
program on an error, restarting the loop after an error message lets users revise their
expressions. Upon importing the read1ine module, users can even recall their previous
inputs using the up arrow or control-p. The final result provides an informative error
reporting interface:

>)

SyntaxError: unexpected token: )

> 2.3.4

ValueError: invalid numeral: 2.3.4

> +

TypeError: + is not a number or call expression

> (/ 5)

TypeError: / requires exactly 2 arguments

> (/ 1 0)

ZeroDivisionError: division by zero

As we generalize our interpreter to new languages other than Calculator, we will see that
the read_eval print_loop iS parameterized by a parsing function, an evaluation function,
and the exception types handled by the try statement. Beyond these changes, all REPLs
can be implemented using the same structure.

Continue: 3.5 Interpreters for Languages with Abstraction
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3.5 Interpreters for Languages with Abstraction

The Calculator language provides a means of combination through nested call
expressions. However, there is no way to define new operators, give names to values, or
express general methods of computation. Calculator does not support abstraction in any
way. As a result, it is not a particularly powerful or general programming language. We now
turn to the task of defining a general programming language that supports abstraction by
binding names to values and defining new operations.

Unlike the previous section, which presented a complete interpreter as Python source
code, this section takes a descriptive approach. The companion project asks you to
implement the ideas presented here by building a fully functional Scheme interpreter.

3.5.1 Structure

This section describes the general structure of a Scheme interpreter. Completing that
project will produce a working implementation of the interpreter described here.

An interpreter for Scheme can share much of the same structure as the Calculator
interpreter. A parser produces an expression that is interpreted by an evaluator. The
evaluation function inspects the form of an expression, and for call expressions it calls a
function to apply a procedure to some arguments. Much of the difference in evaluators is
associated with special forms, user-defined functions, and implementing the environment
model of computation.

Parsing. The scheme_reader and scheme_tokens modules from the Calculator interpreter
are nearly sufficient to parse any valid Scheme expression. However, it does not yet
support quotation or dotted lists. A full Scheme interpreter should be able to parse the
following input expression.

>>> read_line("(car '(1 . 2))")
Pair('car', Pair(Pair('quote', Pair(Pair(l, 2), nil)), nil))

Your first task in implementing the Scheme interpreter will be to extend scheme_reader to
correctly parse dotted lists and quotation.

Evaluation. Scheme is evaluated one expression at a time. A skeleton implementation of
the evaluator is defined in scheme.py Of the companion project. Each expression returned
from scheme_read is passed to the scheme eval function, which evaluates an expression
expr in the current environment env.

The scheme_eval function evaluates the different forms of expressions in Scheme:
primitives, special forms, and call expressions. The form of a combination in Scheme can
be determined by inspecting its first element. Each special form has its own evaluation
rule. A simplified implementation of scheme_eval appears below. Some error checking and
special form handling has been removed in order to focus our discussion. A complete
implementation appears in the companion project.

>>> def scheme_eval(expr, env):
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"womn womn

Evaluate Scheme expression expr in environment env.
if scheme_ symbolp(expr):
return env|[expr]
elif scheme atomp(expr):
return expr
first, rest = expr.first, expr.second

if first == "lambda":
return do_lambda_ form(rest, env)
elif first == "define":

do_define form(rest, env)
return None
else:
procedure = scheme eval(first, env)
args = rest.map(lambda operand: scheme eval(operand, env))
return scheme apply(procedure, args, env)

Procedure application. The final case above invokes a second process, procedure
application, that is implemented by the function scheme_apply. The procedure application
process in Scheme is considerably more general than the calc_apply function in
Calculator. It applies two kinds of arguments: a primtiveProcedure O @ LambdaProcedure. A
PrimitiveProcedure iS implemented in Python; it has an instance attribute £n that is bound
to a Python function. In addition, it may or may not require access to the current
environment. This Python function is called whenever the procedure is applied.

A LambdaProcedure iS implemented in Scheme. It has a body attribute that is a Scheme
expression, evaluated whenever the procedure is applied. To apply the procedure to a list
of arguments, the body expression is evaluated in a new environment. To construct this
environment, a new frame is added to the environment, in which the formal parameters of
the procedure are bound to the arguments. The body is evaluated using scheme_eval.

Eval/apply recursion. The functions that implement the evaluation process, scheme_eval
and scheme_apply, are mutually recursive. Evaluation requires application whenever a call
expression is encountered. Application uses evaluation to evaluate operand expressions
into arguments, as well as to evaluate the body of user-defined procedures. The general
structure of this mutually recursive process appears in interpreters quite generally:
evaluation is defined in terms of application and application is defined in terms of
evaluation.

This recursive cycle ends with language primitives. Evaluation has a base case that is
evaluating a primitive expression. Some special forms also constitute base cases without
recursive calls. Function application has a base case that is applying a primitive procedure.
This mutually recursive structure, between an eval function that processes expression
forms and an apply function that processes functions and their arguments, constitutes the
essence of the evaluation process.

3.5.2 Environments

Now that we have described the structure of our Scheme interpreter, we turn to
implementing the rrame class that forms environments. Each rrame instance represents an
environment in which symbols are bound to values. A frame has a dictionary of bindings,



as well as a parent frame that is none for the global frame.

Bindings are not accessed directly, but instead through two rFrame methods: 10o0kup and
define. The first implements the look-up procedure of the environment model of
computation described in Chapter 1. A symbol is matched against the bindings of the
current frame. If it is found, the value to which it is bound is returned. If it is not found,
look-up proceeds to the parent frame. On the other hand, the define method always binds
a symbol to a value in the current frame.

The implementation of 10okup and the use of define are left as exercises. As an illustration
of their use, consider the following example Scheme program:
(define (factorial n)

(if (= n 0) 1 (* n (factorial (- n 1)))))
(factorial 5)

The first input expression is a define special form, evaluated by the do_define form Python
function. Defining a function has several steps:

1. Check the format of the expression to ensure that it is a well-formed Scheme list
with at least two elements following the keyword define.

2. Analyze the first element, in this case a pair, to find the function name factorial and
formal parameter list (n).
3. Create a LambdaProcedure With the supplied formal parameters, body, and parent

environment.
4. Bind the symbol factorial to this function, in the first frame of the current

environment. In this case, the environment consists only of the global frame.

The second input is a call expression. The procedure passed t0 scheme apply is the
LambdaProcedure just created and bound to the symbol factorial. The args passed is a
one-element Scheme list (5). To apply the procedure, a new frame is created that extends
the global frame (the parent environment of the factorial procedure). In this frame, the
symbol n is bound to the value 5. Then, the body of factorial is evaluated in that
environment, and its value is returned.

3.5.3 Data as Programs

In thinking about a program that evaluates Scheme expressions, an analogy might be
helpful. One operational view of the meaning of a program is that a program is a
description of an abstract machine. For example, consider again this procedure to
compute factorials:

(define (factorial n)
(if (= n 0) 1 (* n (factorial (- n 1)))))

We could express an equivalent program in Python as well, using a conditional expression.

>>> def factorial(n):
return 1 if n == 1 else n * factorial(n - 1)

We may regard this program as the description of a machine containing parts that



decrement, multiply, and test for equality, together with a two-position switch and another
factorial machine. (The factorial machine is infinite because it contains another factorial
machine within it.) The figure below is a flow diagram for the factorial machine, showing
how the parts are wired together.

factorial
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In a similar way, we can regard the Scheme interpreter as a very special machine that
takes as input a description of a machine. Given this input, the interpreter configures itself
to emulate the machine described. For example, if we feed our evaluator the definition of
factorial the evaluator will be able to compute factorials.

From this perspective, our Scheme interpreter is seen to be a universal machine. It mimics
other machines when these are described as Scheme programs. It acts as a bridge
between the data objects that are manipulated by our programming language and the
programming language itself. Image that a user types a Scheme expression into our
running Scheme interpreter. From the perspective of the user, an input expression such as
(+ 2 2) is an expression in the programming language, which the interpreter should
evaluate. From the perspective of the Scheme interpreter, however, the expression is
simply a sentence of words that is to be manipulated according to a well-defined set of
rules.

That the user's programs are the interpreter's data need not be a source of confusion. In
fact, it is sometimes convenient to ignore this distinction, and to give the user the ability to
explicitly evaluate a data object as an expression. In Scheme, we use this facility whenever
employing the run procedure. Similar functions exist in Python: the eva1 function will
evaluate a Python expression and the exec function will execute a Python statement. Thus,

>>> eval('2+2")
4

and

>>> 242
4



both return the same result. Evaluating expressions that are constructed as a part of
execution is a common and powerful feature in dynamic programming languages. In few
languages is this practice as common as in Scheme, but the ability to construct and
evaluate expressions during the course of execution of a program can prove to be a
valuable tool for any programmer.

3.5.4 Macros

Scheme combinations are represented as Scheme lists. The expression (+ 2 x) is a three-
element list containing the symbol +, the number 2, and the symbol x. Likewise, the
expression (map abs '(-1 -2)) is a three-element list containing the symbol map, the
symbol abs, and a list containing -1 and -2.

Because expressions in the language are structured data, it is convenient to write Scheme
expressions that build other Scheme expressions. Scheme programs are just lists of
expressions, and so it is possible to write programs that output and even execute other
programs.

The fact that expressions are lists allows us to use list manipulation procedures, such as
list, cons, car, and cdr, to construct expressions. The built-in eval procedure allows a
constructed expression to be evaluated.

(cons '+ (list 1 2))
(eval (cons '+ (list 1 2)))

Macros are procedures that take expressions as input and return Scheme expressions as
output. Macros exist in many programming languages but are particularly powerful in
Scheme and other Lisp dialects because Scheme expressions are lists, and Scheme has
good built-in procedures for manipulating lists. In Scheme, there are several different built-
in special forms related to macros, but this text will focus on just one: define-macro.

The define-macro special form is similar to the define special form used to create user-
defined procedures.

(define-macro (twice f) (list 'begin f £f))

Evaluating this define-macro expression creates a new macro and binds it to the name
twice in the first frame of the current environment. A macro is called like a procedure using
a call expression, but the evaluation procedure for macro call expressions is different from
the regular procedure for call expressions.

To evaluate a macro call expression, such as (twice (print 2)), Scheme does the
following:

1. Evaluate the operator sub-expression, which evaluates to a macro.
2. Apply the macro procedure on the operands without evaluating the operands first.
3. Evaluate the expression returned from the macro procedure.

For example, calling (twice (print 2)) will pass the expression (print 2), which is a two-
element list containing the symbol print and the number 2, as an argument to twice.
Evaluating the body of twice in an environment in which £ is bound to (print 2) creates



the expression (begin (print 2) (print 2)), which is then evaluated. Evaluating this
output expression displays 2 twice. Hence, this macro evaluates its operand twice.

(twice-macro (print 2))
2

2

3.5.5 AQuasiquotation

In Scheme, a quote prevents an expression from being evaluated. It's possible to use the
symbol quote Or its syntactic abbreviation, an apostrophe. Both of the expressions below
evaluate to the three-element list (+ x y).

(quote (+ x vy))
(t xy)

Similarly, a quasiquote, denoted using a backtick symbol, prevents an expression from
being evaluated. However, parts of that expression can be unquoted, denoted using a
comma, and those unquoted parts are evaluated. Suppose b is bound to 10.

(define b 10)

Quoting or quasiquoting the expression (+ a b) will evaluate to this three-element list,
which contains the symbols a and b.

'(+ a b)
“(+ a b)

In the final example below, b is unquoted and therefore evaluated, while the whole list
remains quoted, and so no addition is performed. Instead, the expression evaluates to the
list (+ a 10).

“(+ /b o)

With quasiquotes and unquotes, it is often the case that a macro definition requires less
work to express. For example, we can simplify twice-macro from the previous section as
follows:

(define-macro (twice f) "~ (begin ,f ,f))
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Chapter 4: Data Processing

4.1 Introduction

Modern computers can process vast amounts of data representing many aspects of the
world. From these big data sets, we can learn about human behavior in unprecedented
ways: how language is used, what photos are taken, what topics are discussed, and how
people engage with their surroundings. To process large data sets efficiently, programs are
organized into pipelines of manipulations on sequential streams of data. In this chapter, we
consider a suite of techniques process and manipulate sequential data streams efficiently.

In Chapter 2, we introduced a sequence interface, implemented in Python by built-in data
types such as 1ist and range. In this chapter, we extend the concept of sequential data to
include collections that have unbounded or even infinite size. Two mathematical examples
of infinite sequences are the positive integers and the Fibonacci numbers. Sequential data
sets of unbounded length also appear in other computational domains. For instance, the
sequence of telephone calls sent through a cell tower, the sequence of mouse movements
made by a computer user, and the sequence of acceleration measurements from sensors
on an aircraft all continue to grow as the world evolves.

Continue: 4.2 Implicit Sequences
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4.2 Implicit Sequences

A sequence can be represented without each element being stored explicitly in the
memory of the computer. That is, we can construct an object that provides access to all of
the elements of some sequential dataset without computing the value of each element in
advance. Instead, we compute elements on demand.

An example of this idea arises in the range container type introduced in Chapter 2. A range
represents a consecutive, bounded sequence of integers. However, it is not the case that
each element of that sequence is represented explicitly in memory. Instead, when an
element is requested from a range, it is computed. Hence, we can represent very large
ranges of integers without using large blocks of memory. Only the end points of the range
are stored as part of the range object.

>>> r = range(10000, 1000000000)
>>> r[45006230]
45016230

In this example, not all 999,990,000 integers in this range are stored when the range
instance is constructed. Instead, the range object adds the first element 10,000 to the
index 45,006,230 to produce the element 45,016,230. Computing values on demand,
rather than retrieving them from an existing representation, is an example of lazy
computation. In computer science, lazy computation describes any program that delays
the computation of a value until that value is needed.

4.2.1 Iterators

Note: This content on iterators and generators now also appears in Chapter 2.

Python and many other programming languages provide a unified way to process elements
of a container value sequentially, called an iterator. An iterator is an object that provides
sequential access to values, one by one.

The iterator abstraction has two components: a mechanism for retrieving the next element
in the sequence being processed and a mechanism for signaling that the end of the
sequence has been reached and no further elements remain. For any container, such as a
list or range, an iterator can be obtained by calling the built-in iter function. The contents
of the iterator can be accessed by calling the built-in next function.

>>> primes = [2, 3, 5, 7]
>>> type(primes)

<class 'list'>

>>> iterator = iter(primes)
>>> type(iterator)

<class 'list_ iterator'>
>>> next(iterator)

2

>>> next(iterator)

3

>>> next(iterator)



Python signals that there are no more values available by raising a stopIteration exception
when next is called. This exception can be handled using a try statement.

>>> next(iterator)

7

>>> next(iterator)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

>>> try:
next (iterator)

except StopIteration:

print('No more values')

No more values

An iterator maintains local state to represent its position in a sequence. Each time next is
called, that position advances. Two separate iterators can track two different positions in
the same sequence. However, two names for the same iterator will share a position
because they share the same value.

>>> r range(3, 13)

>>> g iter(r) # 1lst iterator over r
>>> next(s)

3

>>> next(s)

4

>>> t = iter(r) # 2nd iterator over r
>>> next(t)

3

>>> next(t)

>>> u = t # Alternate name for the 2nd iterator
>>> next(u)

>>> next(u)

Advancing the second iterator does not affect the first. Since the last value returned from
the first iterator was 4, it is positioned to return 5 next. On the other hand, the second
iterator is positioned to return 7 next.

>>> next(s)
5
>>> next(t)
7

Calling iter on an iterator will return that iterator, not a copy. This behavior is included in
Python so that a programmer can call iter on a value to get an iterator without having to
worry about whether it is an iterator or a container.

>>> v = iter(t) # Another alterante name for the 2nd iterator
>>> next(v)



8
>>> next(u)
9
>>> next(t)
10

The usefulness of iterators is derived from the fact that the underlying series of data for an
iterator may not be represented explicitly in memory. An iterator provides a mechanism for
considering each of a series of values in turn, but all of those elements do not need to be
stored simultaneously. Instead, when the next element is requested from an iterator, that
element may be computed on demand instead of being retrieved from an existing memory
source.

Ranges are able to compute the elements of a sequence lazily because the sequence
represented is uniform, and any element is easy to compute from the starting and ending
bounds of the range. lterators allow for lazy generation of a much broader class of
underlying sequential datasets because they do not need to provide access to arbitrary
elements of the underlying series. Instead, iterators are only required to compute the next
element of the series, in order, each time another element is requested. While not as
flexible as random access (accessing arbitrary elements of a sequence in any order),
sequential access to sequential data is often sufficient for data processing applications.

4.2.2 Iterables

Any value that can produce iterators is called an iterable value. In Python, an iterable value
is anything that can be passed to the built-in iter function. lterables include sequence
values such as strings and tuples, as well as other containers such as sets and
dictionaries. Iterators are also iterables because they can be passed to the iter function.

Even unordered collections such as dictionaries must define an ordering over their
contents when they produce iterators. Dictionaries and sets are unordered because the
programmer has no control over the order of iteration, but Python does guarantee certain
properties about their order in its specification.

>>d = {'one': 1, 'two': 2, 'three': 3}
>>> d

{'one': 1, 'three': 3, 'two': 2}
>>> k = iter(d)

>>> next(k)

'one’

>>> next(k)

'"three’

>>> v = iter(d.values())

>>> next(v)

1

>>> next(v)

3

If a dictionary changes in structure because a key is added or removed, then all iterators
become invalid, and future iterators may exhibit arbitrary changes to the order of their
contents. On the other hand, changing the value of an existing key does not invalidate



iterators or change the order of their contents.

>>> d.pop('two')
2
>>> next (k)

RuntimeError: dictionary changed size during iteration
Traceback (most recent call last):

4.2.3 Built-in Iterators

Several built-in functions take as arguments iterable values and return iterators. These
functions are used extensively for lazy sequence processing.

The map function is lazy: calling it does not perform the computation required to compute
elements of its result. Instead, an iterator object is created that can return results if queried
using next. We can observe this fact in the following example, in which the call to print is
delayed until the corresponding element is requested from the doubled iterator.

>>> def double and print(x):
print('***', X, '=>', 2*X, '***')
return 2*x
>>> s = range(3, 7)
>>> doubled = map(double and print, s) # double and print not yet called

>>> next(doubled) # double and print called once
k% 3 => f K*k%

>>> next(doubled) # double and print called again
*kk 4 => § *k*

8

>>> list(doubled) # double and print called twice more
*k%k 5§ => 10 ***

* k% 6 => 12 * k%

[10, 12]

The filter function returns an iterator over a subset of the values in another iterable. The
zip function returns an iterator over tuples of values that combine one value from each of
multiple iterables.

4.2.4 For Statements

The for statement in Python operates on iterators. Objects are iterable (an interface) if they
have an __iter method that returns an iterator. lterable objects can be the value of the
<expression> in the header of a for statement:

for <name> in <expression>:
<suite>

To execute a for statement, Python evaluates the header <expression>, which must yield
an iterable value. Then, the iter function is applied to that value. Until a stopiteration
exception is raised, Python repeatedly calls next on that iterator and binds the result to the



<name> in the for statement. Then, it executes the <suite>.

>>> counts = [1, 2, 3]
>>> for item in counts:
print(item)

In the above example, the for statement implicitly calls iter (counts), which returns an
iterator over its contents. The for statement then calls next on that iterator repeatedly, and
assigns the returned value to item each time. This process continues until the iterator
raises a stopIteration exception, at which point execution of the for statement concludes.

With our knowledge of iterators, we can implement the execution rule of a for statement in
terms of while, assignment, and try statements.

>>> items = iter(counts)
>>> try:
while True:
item = next(items)
print(item)
except StopIteration:
pass

Above, the iterator returned by calling iter on counts is bound to a name items so that it
can be queried for each element in turn. The handling clause for the stopiteration
exception does nothing, but handling the exception provides a control mechanism for
exiting the while loop.

4.2.5 Generators

Generators allow us to define iterations over arbitrary sequences, even infinite sequences,
by leveraging the features of the Python interpreter.

A generator is an iterator returned by a special class of function called a generator function.
Generator functions are distinguished from regular functions in that rather than containing
return Statements in their body, they use yie1ld statements to return elements of a series.

Generators do not use attributes of an object to track their progress through a series.
Instead, they control the execution of the generator function, which runs until the next
yield statement is executed each time next is called on the generator. For example, the
letters_generator function below returns a generator over the letters a, b, ¢, and then d.

>>> def letters_generator():
current = 'a'
while current <= 'd':
yield current

current = chr(ord(current)+1)



>>> for letter in letters generator():
print(letter)

[o TR0 I o S ]

The yield statement indicates that we are defining a generator function, rather than a
regular function. When called, a generator function doesn't return a particular yielded
value, but instead a generator (Which is a type of iterator) that itself can return the yielded
values. Calling next on the generator continues execution of the generator function from
wherever it left off previously until another yield statement is executed.

The first time next is called, the program executes statements from the body of the
letters_generator function until it encounters the yie1ld statement. Then, it pauses and
returns the value of current. yield statements do not destroy the newly created
environment; they preserve it for later. When next is called again, execution resumes where
it left off. The values of current and of any other bound names in the scope of
letters_generator are preserved across subsequent calls to next.

We can walk through the generator by manually calling next ():

>>> letters = letters_generator()

>>> type(letters)

<class 'generator'>

>>> next(letters)

'

>>> next(letters)

b

>>> next(letters)

o

>>> next(letters)

g

>>> next(letters)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

The generator does not start executing any of the body statements of its generator
function until the first time next is called. The generator raises a stopIteration exception
whenever its generator function returns.

4.2.6 Python Streams

Streams offer another way to represent sequential data implicitly. A stream is a lazily
computed linked list. Like the rink class from Chapter 2, a stream instance responds to
requests for its first element and the rest of the stream. Like an Link, the rest of a stream
is itself a stream. Unlike an Link, the rest of a stream is only computed when it is looked
up, rather than being stored in advance. That is, the rest of a stream is computed lazily.



To achieve this lazy evaluation, a stream stores a function that computes the rest of the
stream. Whenever this function is called, its returned value is cached as part of the stream
in an attribute called _rest, named with an underscore to indicate that it should not be
accessed directly.

The accessible attribute rest is a property method that returns the rest of the stream,
computing it if necessary. With this design, a stream stores how to compute the rest of the
stream, rather than always storing the rest explicitly.

>>> class Stream:
"""A lazily computed linked list.
class empty:
def repr (self):
return 'Stream.empty’
empty = empty()

mwomon

def init (self, first, compute rest=lambda: empty):
assert callable(compute rest), 'compute rest must be callable.'
self.first = first
self. compute rest = compute_ rest

@property

def rest(self):

mwaon muon

Return the rest of the stream, computing it if necessary.
if self. compute rest is not None:
self. rest = self. compute rest()
self. compute rest = None
return self. rest
def repr (self):
return 'Stream({0}, <...>)'.format(repr(self.first))

A linked list is defined using a nested expression. For example, we can create an nink that
represents the elements 1 then 5 as follows:

>>> r = Link(1l, Link(2+3, Link(9)))

Likewise, we can create a stream representing the same series. The stream does not
actually compute the second element 5 until the rest of the stream is requested. We
achieve this effect by creating anonymous functions.

>>> s = Stream(l, lambda: Stream(2+3, lambda: Stream(9)))

Here, 1 is the first element of the stream, and the 1ambda expression that follows returns a
function for computing the rest of the stream.

Accessing the elements of linked list r and stream s proceed similarly. However, while 5 is
stored within r, it is computed on demand for s via addition, the first time that it is
requested.

>>> r.first

1

>>> g.first

1

>>> r.rest.first
5



>>> s.rest.first
5

>>> r.rest
Link(5, Link(9))
>>> s.rest
Stream(5, <...>)

While the rest of r is a two-element linked list, the rest of s includes a function to compute
the rest; the fact that it will return the empty stream may not yet have been discovered.

When a stream instance is constructed, the field se1f. rest is None, signifying that the rest
of the stream has not yet been computed. When the rest attribute is requested via a dot
expression, the rest property method is invoked, which triggers computation with

self. rest = self. compute rest(). Because of the caching mechanism within a stream,
the compute_rest function is only ever called once, then discarded.

The essential properties of a compute_rest function are that it takes no arguments, and it
returns a stream Of Stream.empty.

Lazy evaluation gives us the ability to represent infinite sequential datasets using streams.
For example, we can represent increasing integers, starting at any first value.

>>> def integer stream(first):
def compute rest():
return integer stream(first+1)
return Stream(first, compute_rest)

>>> positives = integer stream(1l)
>>> positives

Stream(1l, <...>)

>>> positives.first

1

When integer stream is called for the first time, it returns a stream whose first is the first
integer in the sequence. However, integer stream is actually recursive because this
stream's compute_rest calls integer stream again, with an incremented argument. We say
that integer stream is lazy because the recursive call t0 integer stream is only made
whenever the rest of an integer stream is requested.

>>> positives.first

1

>>> positives.rest.first
2

>>> positives.rest.rest
Stream(3, <...>)

The same higher-order functions that manipulate sequences -- map and filter -- also
apply to streams, although their implementations must change to apply their argument
functions lazily. The function map_stream maps a function over a stream, which produces a
new stream. The locally defined compute_rest function ensures that the function will be
mapped onto the rest of the stream whenever the rest is computed.



>>> def map stream(fn, s):
if s is Stream.empty:
return s
def compute rest():
return map_stream(fn, s.rest)
return Stream(fn(s.first), compute_ rest)

A stream can be filtered by defining a compute_rest function that applies the filter function
to the rest of the stream. If the filter function rejects the first element of the stream, the rest
is computed immediately. Because filter stream iS recursive, the rest may be computed
multiple times until a valid £irst element is found.

>>> def filter stream(fn, s):
if s is Stream.empty:
return s
def compute rest():
return filter stream(fn, s.rest)
if fn(s.first):
return Stream(s.first, compute_rest)
else:
return compute rest()

The map_stream and filter stream functions exhibit a common pattern in stream
processing: a locally defined compute_rest function recursively applies a processing
function to the rest of the stream whenever the rest is computed.

To inspect the contents of a stream, we can coerce up to the first k elements to a Python
list.

>>> def first k as_list(s, k):
first k = []
while s is not Stream.empty and k > 0:
first k.append(s.first)
s, k = s.rest, k-1
return first k

These convenience functions allow us to verify our map_stream implementation with a
simple example that squares the integers from 3 to 7.

>>> s = integer stream(3)

>>> g

Stream(3, <...>)

>>> m = map stream(lambda x: xX*x, s)
>>> m

Stream(9, <...>)

>>> first_k as_list(m, 5)

[9, 16, 25, 36, 49]

We can use our filter stream function to define a stream of prime numbers using the
sieve of Eratosthenes, which filters a stream of integers to remove all numbers that are
multiples of its first element. By successively filtering with each prime, all composite
numbers are removed from the stream.



>>> def primes(pos_stream):
def not divible(x):
return x % pos_stream.first != 0
def compute rest():
return primes(filter stream(not divible, pos_stream.rest))
return Stream(pos_stream.first, compute rest)

By truncating the primes stream, we can enumerate any prefix of the prime numbers.

>>> prime numbers = primes(integer_ stream(2))
>>> first k as list(prime numbers, 7)
(2, 3, 5, 7, 11, 13, 17]

Streams contrast with iterators in that they can be passed to pure functions multiple times
and yield the same result each time. The primes stream is not "used up" by converting it to
alist. That is, the first element of prime numbers is still 2 after converting the prefix of the

stream to a list.

>>> prime numbers.first
2

Just as linked lists provide a simple implementation of the sequence abstraction, streams
provide a simple, functional, recursive data structure that implements lazy evaluation
through the use of higher-order functions.

Continue: 4.3 Declarative Programming
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4.3 Declarative Programming

In addition to streams, data values are often stored in large repositories called databases.
A database consists of a data store containing the data values along with an interface for
retrieving and transforming those values. Each value stored in a database is called a
record. Records with similar structure are grouped into tables. Records are retrieved and
transformed using queries, which are statements in a query language. By far the most
ubiquitous query language in use today is called Structured Query Language or SQL
(pronounced "sequel").

SQL is an example of a declarative programming language. Statements do not describe
computations directly, but instead describe the desired result of some computation. It is
the role of the query interpreter of the database system to design and perform a
computational process to produce such a result.

This interaction differs substantially from the procedural programming paradigm of Python
or Scheme. In Python, computational processes are described directly by the programmer.
A declarative language abstracts away procedural details, instead focusing on the form of

the result.

4.3.1 Tables

The SQL language is standardized, but most database systems implement some custom
variant of the language that is endowed with proprietary features. In this text, we will
describe a small subset of SQL as it is implemented in Sqglite. You can follow along by
downloading Sqlite or by using this online SQL interpreter.

A table, also called a relation, has a fixed number of named and typed columns. Each row
of a table represents a data record and has one value for each column. For example, a
table of cities might have columns 1atitude longitude that both hold numeric values, as
well as a column name that holds a string. Each row would represent a city location position
by its latitude and longitude values.

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge
45 93 Minneapolis

A table with a single row can be created in the SQL language using a select statement, in
which the row values are separated by commas and the column names follow the keyword
"as". All SQL statements end in a semicolon.

sqgqlite> select 38 as latitude, 122 as longitude, "Berkeley" as name;


http://sqlite.org
http://sqlite.org/download.html
http://kripken.github.io/sql.js/GUI/

38|122|Berkeley

The second line is the output, which includes one line per row with columns separated by a
vertical bar.

A multi-line table can be constructed by union, which combines the rows of two tables.
The column names of the left table are used in the constructed table. Spacing within a line
does not affect the result.

sqlite> select 38 as latitude, 122 as longitude, "Berkeley" as name union
...> select 42, 71, "Cambridge" union
...> select 45, 93, "Minneapolis";

38|122|Berkeley

42|71 |Cambridge

45|93 |Minneapolis

A table can be given a name using a create table statement. While this statement can also
be used to create empty tables, we will focus on the form that gives a name to an existing
table defined by a select statement.

sqlite> create table cities as

. > select 38 as latitude, 122 as longitude, "Berkeley" as name union
. e> select 42, 71, "Cambridge" union
. > select 45, 93, "Minneapolis";

Once a table is named, that name can be used in a £rom clause within a select statement.
All columns of a table can be displayed using the special select * form.

sqlite> select * from cities;
38| 122|Berkeley

42|71 |Cambridge

45|93 |Minneapolis

4.3.2 Select Statements

A select statement defines a new table either by listing the values in a single row or, more
commonly, by projecting an existing table using a from clause:

select [column description] from [existing table name]

The columns of the resulting table are described by a comma-separated list of expressions
that are each evaluated for each row of the existing input table.

For example, we can create a two-column table that describes each city by how far north
or south it is of Berkeley. Each degree of latitude measures 60 nautical miles to the north.

sglite> select name, 60*abs(latitude-38) from cities;
Berkeley |0

Cambridge|240

Minneapolis|420

Column descriptions are expressions in a language that shares many properties with



Python: infix operators such as + and %, built-in functions such as abs and round, and
parentheses that describe evaluation order. Names in these expressions, such as 1atitude
above, evaluate to the column value in the row being projected.

Optionally, each expression can be followed by the keyword as and a column name. When
the entire table is given a name, it is often helpful to give each column a name so that it
can be referenced in future select statements. Columns described by a simple name are
named automatically.

sqlite> create table distances as
. e> select name, 60*abs(latitude-38) as distance from cities;
sqlite> select distance/5, name from distances;
0 |Berkeley
48|Cambridge
84 |Minneapolis

Where Clauses. A select statement can also include a where clause with a filtering
expression. This expression filters the rows that are projected. Only a row for which the
filtering expression evaluates to a true value will be used to produce a row in the resulting
table.

sqlite> create table cold as

o> select name from cities where latitude > 43;
sqgqlite> select name, "is cold!" from cold;
Minneapolis|is cold!

Order Clauses. A select statement can also express an ordering over the resulting table.
An order clause contains an ordering expression that is evaluated for each unfiltered row.
The resulting values of this expression are used as a sorting criterion for the result table.

sqlite> select distance, name from distances order by -distance;
84 |[Minneapolis

48|Cambridge

0|Berkeley

The combination of these features allows a select statement to express a wide range of
projections of an input table into a related output table.

4.3.3 Joins

Databases typically contain multiple tables, and queries can require information contained
within different tables to compute a desired result. For instance, we may have a second
table describing the mean daily high temperature of different cities.

sqlite> create table temps as
. > select "Berkeley" as city, 68 as temp union
. > select "Chicago" , 59 union
. > select "Minneapolis" , 55;

Data are combined by joining multiple tables together into one, a fundamental operation in



database systems. There are many methods of joining, all closely related, but we will focus
on just one method in this text. When tables are joined, the resulting table contains a new
row for each combination of rows in the input tables. If two tables are joined and the left
table has $m$ rows and the right table has $n$ rows, then the joined table will have $m
\cdot n$ rows. Joins are expressed in SQL by separating table names by commas in the
from clause of a select statement.

sqlite> select * from cities, temps;
38|122|Berkeley|Berkeley|68
38|122|Berkeley|Chicago|59
38|122|Berkeley|Minneapolis|55

42|71 |Cambridge |Berkeley|68

42|71 |Cambridge|Chicago|59

42|71 |Cambridge |Minneapolis|55

45|93 |Minneapolis|Berkeley|68

45|93 |Minneapolis|Chicago|59

45|93 |Minneapolis|Minneapolis|55

Joins are typically accompanied by a where clause that expresses a relationship between
the two tables. For example, if we wanted to collect data into a table that would allow us to
correlate latitude and temperature, we would select rows from the join where the same city
is mentioned in each. Within the cities table, the city name is stored in a column called
name. Within the temps table, the city name is stored in a column called city. The where
clause can select for rows in the joined table in which these values are equal. In SQL,
numeric equality is tested with a single = symbol.

sqlite> select name, latitude, temp from cities, temps where name = city;
Berkeley|38|68
Minneapolis|45|55

Tables may have overlapping column names, and so we need a method for disambiguating
column names by table. A table may also be joined with itself, and so we need a method
for disambiguating tables. To do so, SQL allows us to give aliases to tables within a from
clause using the keyword as and to refer to a column within a particular table using a dot
expression. The following select statement computes the temperature difference between
pairs of unequal cities. The alphabetical ordering constraint in the where clause ensures
that each pair will only appear once in the result.

sglite> select a.city, b.city, a.temp - b.temp
I from temps as a, temps as b where a.city < b.city;
Berkeley|Chicago]|10
Berkeley |Minneapolis|15
Chicago|Minneapolis|5

Our two means of combining tables in SQL, join and union, allow for a great deal of
expressive power in the language.

4.3.4 Aggregation and Grouping

The select statements introduced so far can join, project, and manipulate individual rows.



In addition, a select statement can perform aggregation operations over multiple rows. The
aggregate functions max, min, count, and sum return the maximum, minimum, number, and
sum of the values in a column. Multiple aggregate functions can be applied to the same set
of rows by defining more than one column. Only columns that are included by the where
clause are considered in the aggreagation.

sqlite> create table animals as

. > select "dog" as name, 4 as legs, 20 as weight union
> select "cat" , 4 , 10 union
> select "ferret" , 4 , 10 union
> select "t-rex" , 2 , 12000 union
> select "penguin" , 2 , 10 union

. > select "bird" , 2 , 63
sglite> select max(legs) from animals;
4
sglite> select sum(weight) from animals;
12056
sglite> select min(legs), max(weight) from animals where name <> "t-rex";
2120

The distinct keyword ensures that no repeated values in a column are included in the
aggregation. Only two distinct values of 1egs appear in the animais table. The special
count (*) syntax counts the number of rows.

sglite> select count(legs) from animals;

6

sglite> select count(*) from animals;

6

sglite> select count(distinct legs) from animals;
2

Each of these select statements has produced a table with a single row. The group by and
having clauses of a select statement are used to partition rows into groups and select only
a subset of the groups. Any aggregate functions in the having clause or column description
will apply to each group independently, rather than the entire set of rows in the table.

For example, to compute the maximum weight of both a four-legged and a two-legged
animal from this table, the first statement below groups together dogs and cats as one
group and birds as a separate group. The result indicates that the maximum weight for a
two-legged animal is 3 (the bird) and for a four-legged animal is 20 (the dog). The second
query lists the values in the 1egs column for which there are at least two distinct names.

sglite> select legs, max(weight) from animals group by legs;

2|12000

4|20

sqlite> select weight from animals group by weight having count(*)>1;
10

Multiple columns and full expressions can appear in the group by clause, and groups will
be formed for every unique combination of values that result. Typically, the expression
used for grouping also appears in the column description, so that it is easy to identify
which result row resulted from each group.



sglite> select max(name) from animals group by legs, weight order by name;

bird

dog

ferret

penguin

t-rex

sglite> select max(name), legs, weight from animals group by legs, weight
. > having max(weight) < 100;

bird|2]|6

penguin|2|10

ferret|4]10

dog|4]20

sqlite> select count(*), weight/legs from animals group by weight/legs;

2|2

1|3

2|5

116000

A having clause can contain the same filtering as a where clause, but can also include calls
to aggregate functions. For the fastest execution and clearest use of the language, a
condition that filters individual rows based on their contents should appear in a where
clause, while a having clause should be used only when aggregation is required in the
condition (such as specifying a minimum count for a group).

When using a group by clause, column descriptions can contain expressions that do not
aggregate. In some cases, the SQL interpreter will choose the value from a row that
corresponds to another column that includes aggregation. For example, the following
statement gives the name of an animal with maximal weight.

sqlite> select name, max(weight) from animals;

t-rex|12000

sqlite> select name, legs, max(weight) from animals group by legs;
t-rex|2|12000

dog|4]20

However, whenever the row that corresponds to aggregation is unclear (for instance, when
aggregating with count instead of max), the value chosen may be arbitrary. For the clearest
and most predictable use of the language, a select statement that includes a group by
clause should include at least one aggregate column and only include non-aggregate
columns if their contents is predictable from the aggregation.

4.3.5 Create Table and Drop Table

The create table statement creates a new table in our database. As we saw earlier, we
can combine the create table statement with the select statement to give a name to an
existing table, but we can also use the create table statement along with a list of column
names to create an empty table. For each column, we can optionally include the unique
keyword, which indicates that the column can only contain unique values, or the default
keyword, which gives a default value for an item in the column. For the entire create table
statement, including the optional if not exists clause will prevent an error if we attempt



to create duplicate tables.

The drop table statement deletes a table from our database. Including the optional if
exists clause will prevent an error if we attempt to drop a non-existing table.

sqlite> create table primes (n, prime);

sqgqlite> drop table primes;

sqlite> drop table if exists primes;

sglite> create table primes (n unique, prime default 1);
sqlite> create table if not exists primes (n, prime);

4.3.6 Modifying Tables

The insert into statement allows us to add rows to a table in our database. In particular,
we can insert values into all columns of our table, or we can add to one specific column,
which will set the other columns to their default values. By combining the insert into and
select statements, we can add the rows of an existing table to our table.

sglite> insert into primes values (2, 1), (3, 1);
sqlite> select * from primes;

2|1

3|1

sglite> insert into primes(n) values (4), (5);
sqlite> select * from primes;

2|1

3|1

4|1

5|1

sglite> insert into primes(n) select n + 4 from primes;
sqlite> select * from primes;

2|1

3|1

4|1

5|1

6|1

7)1

8|1

9|1

The update statement sets all entries in certain columns of a table to new values for a
subset of rows as indicated by an optional where clause. We can update all rows by
omitting the optional where clause.

The delete from statement deletes a subset of rows of a table as indicated by an optional
where clause. If we do not include a where clause, then we will delete all rows, but an empty
table would remain in our database.

sglite> update primes set prime = 0 where n > 2 and
sqlite> update primes set prime 0 where n > 3 and
sglite> select * from primes;

2|1

3|1

4]0

]
o
~e

ns%$ 2
n% 3 =20;



5|1

6|0

7|1

8|0

9]0

sqlite> delete from primes where prime = 0;
sglite> select * from primes;
2|1

3|1

5|1

7|1
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4.4 Logic Programming

In this section, we introduce a declarative query language called 1ogic, designed
specifically for this text. It is based upon Prolog and the declarative language in Structure
and Interpretation of Computer Programs. Data records are expressed as Scheme lists,
and queries are expressed as Scheme values. The logic interpreter is a complete
implementation that depends upon the Scheme project of the previous chapter.

4.4.1 Facts and Queries

Databases store records that represent facts in the system. The purpose of the query
interpreter is to retrieve collections of facts drawn directly from database records, as well
as to deduce new facts from the database using logical inference. A fact statement in the
logic language consists of one or more lists following the keyword fact. A simple fact is a
single list. A dog breeder with an interest in U.S. Presidents might record the genealogy of
her collection of dogs using the 10gic language as follows:

(fact (parent abraham barack))

(fact (parent abraham clinton))

(fact (parent delano herbert))

(fact (parent fillmore abraham))

(fact (parent fillmore delano))

(fact (parent fillmore grover))
(fact (parent eisenhower fillmore))

Each fact is not a procedure application, as in a Scheme expression, but instead a relation
that is declared. "The dog Abraham is the parent of Barack," declares the first fact.
Relation types do not need to be defined in advance. Relations are not applied, but instead
matched to queries.

A query also consists of one or more lists, but begins with the keyword query. A query may
contain variables, which are symbols that begin with a question mark. Variables are
matched to facts by the query interpreter:

(query (parent abraham ?child))

The query interpreter responds with success! to indicate that the query matches some fact.
The following lines show substitutions of the variable 2chi1d that match the query to the
facts in the database.

Compound facts. Facts may also contain variables as well as multiple sub-expressions. A
multi-expression fact begins with a conclusion, followed by hypotheses. For the conclusion
to be true, all of the hypotheses must be satisfied:

(fact <conclusion> <hypothesis0> <hypothesisl> ... <hypothesisN>)

For example, facts about children can be declared based on the facts about parents
already in the database:

(fact (child ?c ?p) (parent ?p 2?c))

The fact above can be read as: "2c is the child of ?p, provided that 2p is the parent of z¢." A
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query can now refer to this fact:

(query (child ?child fillmore))

The query above requires the query interpreter to combine the fact that defines chiid with
the various parent facts about fi11more. The user of the language does not need to know
how this information is combined, but only that the result has a particular form. It is up to
the query interpreter to prove that (child abraham fillmore) is true, given the available
facts.

A query is not required to include variables; it may simply verify a fact:

(query (child herbert delano))

A query that does not match any facts will return failure:

(query (child eisenhower ?parent))

Negation. We can check if some query does not match any fact by using the special
keyword not:

(query (not <relation>))

This query succeeds if <relation> fails, and fails if <relation> succeeds. This idea is
known as negation as failure.

(query (not (parent abraham clinton)))
(query (not (parent abraham barack)))

Sometimes, negation as failure may be counterintuitive to how one might expect negation
to work. Think about the result of the following query:

(query (not (parent abraham ?who)))

Why does this query fail? Surely there are many symbols that could be bound to 2who for
which this should hold. However, the steps for negation indicate that we first inspect the
relation (parent abraham ?who). This relation succeeds, since ?who can be bound to either
barack Or clinton. Because this relation succeeds, the negation of this relation must fail.

4.4.2 Recursive Facts

The 10gic language also allows recursive facts. That is, the conclusion of a fact may
depend upon a hypothesis that contains the same symbols. For instance, the ancestor
relation is defined with two facts. Some z2a is an ancestor of 2y if it is a parent of 2y or if it is
the parent of an ancestor of 2y:

(fact (ancestor ?a ?y) (parent ?a ?y))
(fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

A single query can then list all ancestors of herbert:

(query (ancestor ?a herbert))

Compound queries. A query may have multiple subexpressions, in which case all must be
satisfied simultaneously by an assignment of symbols to variables. If a variable appears
more than once in a query, then it must take the same value in each context. The following
query finds ancestors of both herbert and barack:



(query (ancestor ?a barack) (ancestor ?a herbert))

Recursive facts may require long chains of inference to match queries to existing facts in a
database. For instance, to prove the fact (ancestor fillmore herbert), wWe must prove
each of the following facts in succession:

(parent delano herbert) ; (1), a simple fact

(ancestor delano herbert) ; (2), from (1) and the 1lst ancestor fact
(parent fillmore delano) ; (3), a simple fact

(ancestor fillmore herbert) ; (4), from (2), (3), & the 2nd ancestor fact

In this way, a single fact can imply a large number of additional facts, or even infinitely
many, as long as the query interpreter is able to discover them.

Hierarchical facts. Thus far, each fact and query expression has been a list of symbols. In
addition, fact and query lists can contain lists, providing a way to represent hierarchical
data. The color of each dog may be stored along with the name an additional record:
(fact (dog (name abraham) (color white)))

(fact (dog (name barack) (color tan)))

(fact (dog (name clinton) (color white)))

(fact (dog (name delano) (color white)))

(fact (dog (name eisenhower) (color tan)))

(fact (dog (name fillmore) (color brown)))

(fact (dog (name grover) (color tan)))
(fact (dog (name herbert) (color brown)))

Queries can articulate the full structure of hierarchical facts, or they can match variables to
whole lists:

(query (dog (name clinton) (color ?color)))
(query (dog (name clinton) ?info))

Much of the power of a database lies in the ability of the query interpreter to join together
multiple kinds of facts in a single query. The following query finds all pairs of dogs for
which one is the ancestor of the other and they share a color:

(query (dog (name ?name) (color ?color))

(ancestor ?ancestor ?name)
(dog (name ?ancestor) (color ?color)))

Variables can refer to lists in hierarchical records, but also using dot notation. A variable
following a dot matches the rest of the list of a fact. Dotted lists can appear in either facts
or queries. The following example constructs pedigrees of dogs by listing their chain of
ancestry. Young barack follows a venerable line of presidential pups:
(fact (pedigree ?name) (dog (name ?name) . 2details))
(fact (pedigree ?child ?parent . ?rest)

(parent ?parent ?child)

(pedigree ?parent . ?rest))
(query (pedigree barack . ?lineage))

Declarative or logical programming can express relationships among facts with remarkable
efficiency. For example, if we wish to express that two lists can append to form a longer
list with the elements of the first, followed by the elements of the second, we state two
rules. First, a base case declares that appending an empty list to any list gives that list:

(fact (append-to-form () ?x ?x))



Second, a recursive fact declares that a list with first element 2a and rest 2r appends to a
list 2y to form a list with first element 2a and some appended rest 2z. For this relation to
hold, it must be the case that ?r and 2y append to form zz:

(fact (append-to-form (?a . ?r) ?y (?a . ?z)) (append-to-form ?r ?y ?2z))

Using these two facts, the query interpreter can compute the result of appending any two
lists together:

(query (append-to-form (a b c) (d e) ?result))

In addition, it can compute all possible pairs of lists ?21eft and 2right that can append to
form thelist (a b ¢ d e):

(query (append-to-form ?left ?right (a b c d e)))

Although it may appear that our query interpreter is quite intelligent, we will see that it finds
these combinations through one simple operation repeated many times: that of matching
two lists that contain variables in an environment.

Continue: 4.5 Unification

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold
Abelson and Gerald Jay Sussman, is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
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4.5 Unification

This section describes an implementation of the query interpreter that performs inference
in the 1ogic language. The interpreter is a general problem solver, but has substantial
limitations on the scale and type of problems it can solve. More sophisticated logical
programming languages exist, but the construction of efficient inference procedures
remains an active research topic in computer science.

The fundamental operation performed by the query interpreter is called unification.
Unification is a general method of matching a query to a fact, each of which may contain
variables. The query interpreter applies this operation repeatedly, first to match the original
query to conclusions of facts, and then to match the hypotheses of facts to other
conclusions in the database. In doing so, the query interpreter performs a search through
the space of all facts related to a query. If it finds a way to support that query with an
assignment of values to variables, it returns that assignment as a successful result.

4.5.1 Pattern Matching

In order to return simple facts that match a query, the interpreter must match a query that
contains variables with a fact that does not. For example, the query (query (parent
abraham ?child)) and the fact (fact (parent abraham barack)) match, if the variable 2
child takes the value barack.

In general, a pattern matches some expression (a possibly nested Scheme list) if there is a
binding of variable names to values such that substituting those values into the pattern
yields the expression.

For example, the expression ((a b) ¢ (a b)) matches the pattern (2x ¢ 2x) with variable
?x bound to value (a b). The same expression matches the pattern ((a 2y) 2z (a b)) with
variable 2y bound to b and 2z bound to c.

4.5.2 Representing Facts and Queries

The following examples can be replicated by importing the provided logic example
program.

>>> from logic import *

Both queries and facts are represented as Scheme lists in the logic language, using the
same prair class and nil object in the previous chapter. For example, the query expression
(?x c ?x) is represented as nested rair instances.

>>> read line("(?x c ?x)")
Pair('?x', Pair('c', Pair('?x', nil)))

As in the Scheme project, an environment that binds symbols to values is represented with
an instance of the rFrame class, which has an attribute called bindings.
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The function that performs pattern matching in the 1ogic language is called unify. It takes
two inputs, e and £, as well as an environment env that records the bindings of variables to
values.

>>> e read line("((a b) c (a b))")
>>> f read line("(?x c ?x)")

>>> env = Frame(None)

>>> unify(e, £, env)

True

>>> env.bindings

{'?x': Pair('a', Pair('b', nil))}
>>> print(env.lookup('?x"'))

(a b)

Above, the return value of True from unify indicates that the pattern £ was able to match
the expression e. The result of unification is recorded in the binding in env of 2x t0 (a b).

4.5.3 The Unification Algorithm

Unification is a generalization of pattern matching that attempts to find a mapping between
two expressions that may both contain variables. The unify function implements
unification via a recursive process, which performs unification on corresponding parts of
two expressions until a contradiction is reached or a viable binding to all variables can be
established.

Let us begin with an example. The pattern (2x 2x) can match the pattern ((a 2y ¢) (a b 2
z)) because there is an expression with no variables that matches both: ((a b ¢) (a b
c)). Unification identifies this solution via the following steps:

1. To match the first element of each pattern, the variable 2x is bound to the expression
(a 2y c).

2. To match the second element of each pattern, first the variable 2x is replaced by its
value. Then, (a 2y c) is matched to (a b 2z) by binding 2y to b and 2z to c.

As a result, the bindings placed in the environment passed to unify contain entries for 2x, 2
y,and ?z.

>>> e = read line("(?x ?x)")

>>> f = read line(" ((a ?y c) (a b ?z))")
>>> env = Frame(None)

>>> unify(e, £, env)

True
>>> env.bindings
{'?22': 'c', '"?2y': 'b', '?x': Pair('a', Pair('?y', Pair('c', nil)))}

The result of unification may bind a variable to an expression that also contains variables,
as we see above with 2x bound to (a 2y c). The bind function recursively and repeatedly
binds all variables to their values in an expression until no bound variables remain.

>>> print(bind(e, env))
((a bc) (abc))



In general, unification proceeds by checking several conditions. The implementation of
unify directly follows the description below.

o~ wbh =

Both inputs e and £ are replaced by their values if they are variables.

If e and £ are equal, unification succeeds.

If e is a variable, unification succeeds and e is bound to f.

If £ is a variable, unification succeeds and £ is bound to e.

If neither is a variable, both are not lists, and they are not equal, then e and £ cannot

be unified, and so unification fails.
If none of these cases holds, then e and £ are both pairs, and so unification is

performed on both their first and second corresponding elements.

>>> def unify(e, £, env):

moon

Destructively extend ENV so as to unify (make equal) e and f, returning
True if this succeeds and False otherwise. ENV may be modified in either
case (its existing bindings are never changed)."""

e = lookup(e, env)

£ lookup(f, env)

if e ==

return True
elif isvar(e):
env.define(e, f)
return True
elif isvar(f):
env.define(f, e)
return True
elif scheme atomp(e) or scheme atomp(f):
return False
else:
return unify(e.first, f.first, env) and unify(e.second, f.second, env)

4.5.4 Proofs

One way to think about the 10gic language is as a prover of assertions in a formal system.
Each stated fact establishes an axiom in a formal system, and each query must be
established by the query interpreter from these axioms. That is, each query asserts that
there is some assignment to its variables such that all of its sub-expressions
simultaneously follow from the facts of the system. The role of the query interpreter is to
verify that this is so.

For instance, given the set of facts about dogs, we may assert that there is some common
ancestor of Clinton and a tan dog. The query interpreter only outputs success! if it is able
to establish that this assertion is true. As a byproduct, it informs us of the name of that
common ancestor and the tan dog:

(fact
(fact
(fact
(fact
(fact

(parent abraham barack))
(parent abraham clinton))
(parent delano herbert))
(parent fillmore abraham))
(parent fillmore delano))



(fact (parent fillmore grover))
(fact (parent eisenhower fillmore))

(fact (ancestor ?a ?y) (parent ?a ?y))
(fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

(fact (dog (name abraham) (color white)))
(fact (dog (name barack) (color tan)))
(fact (dog (name clinton) (color white)))
(fact (dog (name delano) (color white)))
(fact (dog (name eisenhower) (color tan)))
(fact (dog (name fillmore) (color brown)))
(fact (dog (name grover) (color tan)))
(fact (dog (name herbert) (color brown)))
(query (ancestor ?a clinton)

(ancestor ?a ?brown-dog)

(dog (name ?brown-dog) (color brown)))

Each of the three assignments shown in the result is a trace of a larger proof that the query
is true given the facts. A full proof would include all of the facts that were used, for instance
including (parent abraham clinton) and (parent fillmore abraham).

4.5.5 Search

In order to establish a query from the facts already established in the system, the query
interpreter performs a search in the space of all possible facts. Unification is the primitive
operation that pattern matches two expressions. The search procedure in a query
interpreter chooses what expressions to unify in order to find a set of facts that chain
together to establishes the query.

The recursive search function implements the search procedure for the 10gic language. It
takes as input the Scheme list of c1auses in the query, an environment env containing
current bindings of symbols to values (initially empty), and the depth of the chain of rules
that have been chained together already.

>>> def search(clauses, env, depth):
"""Search for an application of rules to establish all the CLAUSES,
non-destructively extending the unifier ENV. Limit the search to
the nested application of DEPTH rules."""
if clauses is nil:
yield env
elif DEPTH_LIMIT is None or depth <= DEPTH LIMIT:
if clauses.first.first in ('not', '~'):
clause = ground(clauses.first.second, env)
try:
next (search(clause, glob, 0))
except StopIteration:
env_head = Frame(env)
for result in search(clauses.second, env_head, depth+l):
yield result
else:
for fact in facts:
fact = rename variables(fact, get unique id())
env_head = Frame(env)



if unify(fact.first, clauses.first, env_head):
for env_rule in search(fact.second, env_head, depth+l):
for result in search(clauses.second, env_rule, depth+l):
yield result

The search to satisfy all clauses simultaneously begins with the first clause. In the special
case where our first clause is negated, rather than trying to unify the first clause of the
query with a fact, we check that there is no such unification possible through a recursive
call to search. If this recursive call yields nothing, we continue the search process with the
rest of our clauses. If unification is possible, we fail immediately.

If our first clause is not negated, then for each fact in the database, search attempts to
unify the first clause of the fact with the first clause of the query. Unification is performed in
a new environment env_head. As a side effect of unification, variables are bound to values

iN env_head.

If unification is successful, then the clause matches the conclusion of the current rule. The
following for statement attempts to establish the hypotheses of the rule, so that the
conclusion can be established. It is here that the hypotheses of a recursive rule would be
passed recursively to search in order to be established.

Finally, for every successful search of fact.second, the resulting environment is bound to
env_rule. Given these bindings of values to variables, the final for statement searches to
establish the rest of the clauses in the initial query. Any successful result is returned via the
inner yield statement.

Unique names. Unification assumes that no variable is shared among both e and .
However, we often reuse variable names in the facts and queries of the 10gic language.
We would not like to confuse an 2x in one fact with an 2x in another; these variables are
unrelated. To ensure that names are not confused, before a fact is passed into unify, its
variable names are replaced by unique names using rename variables by appending a
unique integer for the fact.

>>> def rename variables(expr, n):
"""Rename all variables in EXPR with an identifier N."""
if isvar(expr):
return expr + ' ' + str(n)
elif scheme pairp(expr):
return Pair(rename_variables(expr.first, n),
rename_variables(expr.second, n))
else:
return expr

The remaining details, including the user interface to the 1ogic language and the definition
of various helper functions, appears in the logic example.

Continue: 4.6 Distributed Computing

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold
Abelson and Gerald Jay Sussman, is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
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4.6 Distributed Computing

Large-scale data processing applications often coordinate effort among multiple
computers. A distributed computing application is one in which multiple interconnected but
independent computers coordinate to perform a joint computation.

Different computers are independent in the sense that they do not directly share memory.
Instead, they communicate with each other using messages, information transferred from
one computer to another over a network.

4.6.1 Messages

Messages sent between computers are sequences of bytes. The purpose of a message
varies; messages can request data, send data, or instruct another computer to evaluate a
procedure call. In all cases, the sending computer must encode information in a way that
the receiving computer can decode and correctly interpret. To do so, computers adopt a
message protocol that endows meaning to sequences of bytes.

A message protocol is a set of rules for encoding and interpreting messages. Both the
sending and receiving computers must agree on the semantics of a message to enable
successful communication. Many message protocols specify that a message conform to a
particular format in which certain bits at fixed positions indicate fixed conditions. Others
use special bytes or byte sequences to delimit parts of the message, much as punctuation
delimits sub-expressions in the syntax of a programming language.

Message protocols are not particular programs or software libraries. Instead, they are rules
that can be applied by a variety of programs, even written in different programming
languages. As a result, computers with vastly different software systems can participate in
the same distributed system, simply by conforming to the message protocols that govern
the system.

The TCP/IP Protocols. On the Internet, messages are transferred from one machine to
another using the Internet Protocol (IP), which specifies how to transfer packets of data
among different networks to allow global Internet communication. IP was designed under
the assumption that networks are inherently unreliable at any point and dynamic in
structure. Moreover, it does not assume that any central tracking or monitoring of
communication exists. Each packet contains a header containing the destination IP
address, along with other information. All packets are forwarded throughout the network
toward the destination using simple routing rules on a best-effort basis.

This design imposes constraints on communication. Packets transferred using modern IP
implementations (IPv4 and IPv6) have a maximum size of 65,535 bytes. Larger data values
must be split among multiple packets. The IP does not guarantee that packets will be
received in the same order that they were sent. Some packets may be lost, and some
packets may be transmitted multiple times.

The Transmission Control Protocol is an abstraction defined in terms of the IP that
provides reliable, ordered transmission of arbitrarily large byte streams. The protocol
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provides this guarantee by correctly ordering packets transferred by the IP, removing
duplicates, and requesting retransmission of lost packets. This improved reliability comes
at the expense of latency, the time required to send a message from one point to another.

The TCP breaks a stream of data into TCP segments, each of which includes a portion of
the data preceded by a header that contains sequence and state information to support
reliable, ordered transmission of data. Some TCP segments do not include data at all, but
instead establish or terminate a connection between two computers.

Establishing a connection between two computers a and B proceeds in three steps:

1. A sends arequest to a port of B to establish a TCP connection, providing a port
number to which to send the response.

2. B sends a response to the port specified by a and waits for its response to be
acknowledged.

3. a sends an acknowledgment response, verifying that data can be transferred in both
directions.

After this three-step "handshake", the TCP connection is established, and a and B can
send data to each other. Terminating a TCP connection proceeds as a sequence of steps
in which both the client and server request and acknowledge the end of the connection.

4.6.2 Client/Server Architecture

The client/server architecture is a way to dispense a service from a central source. A server
provides a service and multiple clients communicate with the server to consume that
service. In this architecture, clients and servers have different roles. The server's role is to
respond to service requests from clients, while a client's role is to issue requests and make
use of the server's response in order to perform some task. The diagram below illustrates
the architecture.

request

The most influential use of the model is the modern World Wide Web. When a web browser
displays the contents of a web page, several programs running on independent computers
interact using the client/server architecture. This section describes the process of



requesting a web page in order to illustrate central ideas in client/server distributed
systems.

Roles. The web browser application on a Web user's computer has the role of the client
when requesting a web page. When requesting the content from a domain name on the
Internet, such as www.nytimes.com, it must communicate with at least two different
servers.

The client first requests the Internet Protocol (IP) address of the computer located at that
name from a Domain Name Server (DNS). A DNS provides the service of mapping domain
names to IP addresses, which are numerical identifiers of machines on the Internet. Python
can make such a request directly using the socket module.

>>> from socket import gethostbyname
>>> gethostbyname( 'www.nytimes.com')
"170.149.172.130"

The client then requests the contents of the web page from the web server located at that
IP address. The response in this case is an HTML document that contains headlines and
article excerpts of the day's news, as well as expressions that indicate how the web
browser client should lay out that contents on the user's screen. Python can make the two
requests required to retrieve this content using the ur11ib.request module.

>>> from urllib.request import urlopen

>>> response = urlopen( 'http://www.nytimes.com').read()
>>> response[:15]

b'<!DOCTYPE html>"'

Upon receiving this response, the browser issues additional requests for images, videos,
and other auxiliary components of the page. These requests are initiated because the
original HTML document contains addresses of additional content and a description of
how they embed into the page.

An HTTP Request. The Hypertext Transfer Protocol (HTTP) is a protocol implemented
using TCP that governs communication for the World Wide Web (WWW). It assumes a
client/server architecture between a web browser and a web server. HTTP specifies the
format of messages exchanged between browsers and servers. All web browsers use the
HTTP format to request pages from a web server, and all web servers use the HTTP format
to send back their responses.

HTTP requests have several types, the most common of which is a cer request for a
specific web page. A ceT request specifies a location. For instance, typing the address
http://en.wikipedia.org/wiki/UC_Berkeley iNnt0 a web browser issues an HTTP GeT
request to port 80 of the web server at en.wikipedia.org for the contents at location
/wiki/UC_Berkeley.

The server sends back an HTTP response:

HTTP/1.1 200 OK

Date: Mon, 23 May 2011 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2011 23:11:55 GMT
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Content-Type: text/html; charset=UTF-8

. web page content ...

On the first line, the text 200 ok indicates that there were no errors in responding to the
request. The subsequent lines of the header give information about the server, the date,
and the type of content being sent back.

If you have typed in a wrong web address, or clicked on a broken link, you may have seen
a message such as this error:

404 Error File Not Found

It means that the server sent back an HTTP header that started:

HTTP/1.1 404 Not Found

The numbers 200 and 404 are HTTP response codes. A fixed set of response codes is a
common feature of a message protocol. Designers of protocols attempt to anticipate
common messages that will be sent via the protocol and assign fixed codes to reduce
transmission size and establish a common message semantics. In the HTTP protocol, the
200 response code indicates success, while 404 indicates an error that a resource was not
found. A variety of other response codes exist in the HTTP 1.1 standard as well.

Modularity. The concepts of client and server are powerful abstractions. A server provides
a service, possibly to multiple clients simultaneously, and a client consumes that service.
The clients do not need to know the details of how the service is provided, or how the data
they are receiving is stored or calculated, and the server does not need to know how its
responses are going to be used.

On the web, we think of clients and servers as being on different machines, but even
systems on a single machine can have client/server architectures. For example, signals
from input devices on a computer need to be generally available to programs running on
the computer. The programs are clients, consuming mouse and keyboard input data. The
operating system's device drivers are the servers, taking in physical signals and serving
them up as usable input. In addition, the central processing unit (CPU) and the specialized
graphical processing unit (GPU) often participate in a client/server architecture with the
CPU as the client and the GPU as a server of images.

A drawback of client/server systems is that the server is a single point of failure. It is the
only component with the ability to dispense the service. There can be any number of
clients, which are interchangeable and can come and go as necessary.

Another drawback of client-server systems is that computing resources become scarce if
there are too many clients. Clients increase the demand on the system without contributing
any computing resources.

4.6.3 Peer-to-Peer Systems

The client/server model is appropriate for service-oriented situations. However, there are
other computational goals for which a more equal division of labor is a better choice. The
term peer-to-peer is used to describe distributed systems in which labor is divided among
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all the components of the system. All the computers send and receive data, and they all
contribute some processing power and memory. As a distributed system increases in size,
its capacity of computational resources increases. In a peer-to-peer system, all
components of the system contribute some processing power and memory to a distributed
computation.

Division of labor among all participants is the identifying characteristic of a peer-to-peer
system. This means that peers need to be able to communicate with each other reliably. In
order to make sure that messages reach their intended destinations, peer-to-peer systems
need to have an organized network structure. The components in these systems cooperate
to maintain enough information about the locations of other components to send
messages to intended destinations.

In some peer-to-peer systems, the job of maintaining the health of the network is taken on
by a set of specialized components. Such systems are not pure peer-to-peer systems,
because they have different types of components that serve different functions. The
components that support a peer-to-peer network act like scaffolding: they help the
network stay connected, they maintain information about the locations of different
computers, and they help newcomers take their place within their neighborhood.

The most common applications of peer-to-peer systems are data transfer and data
storage. For data transfer, each computer in the system contributes to send data over the
network. If the destination computer is in a particular computer's neighborhood, that
computer helps send data along. For data storage, the data set may be too large to fit on
any single computer, or too valuable to store on just a single computer. Each computer
stores a small portion of the data, and there may be multiple copies of the same data
spread over different computers. When a computer fails, the data that was on it can be
restored from other copies and put back when a replacement arrives.

Skype, the voice- and video-chat service, is an example of a data transfer application with
a peer-to-peer architecture. When two people on different computers are having a Skype
conversation, their communications are transmitted through a peer-to-peer network. This
network is composed of other computers running the Skype application. Each computer
knows the location of a few other computers in its neighborhood. A computer helps send a
packet to its destination by passing it on a neighbor, which passes it on to some other
neighbor, and so on, until the packet reaches its intended destination. Skype is not a pure
peer-to-peer system. A scaffolding network of supernodes is responsible for logging-in and
logging-out users, maintaining information about the locations of their computers, and
modifying the network structure when users enter and exit.

Continue: 4.7 Distributed Data Processing
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4.7 Distributed Data Processing

Distributed systems are often used to collect, access, and manipulate large data sets. For
example, the database systems described earlier in the chapter can operate over datasets
that are stored across multiple machines. No single machine may contain the data
necessary to respond to a query, and so communication is required to service requests.

This section investigates a typical big data processing scenario in which a data set too
large to be processed by a single machine is instead distributed among many machines,
each of which process a portion of the dataset. The result of processing must often be
aggregated across machines, so that results from one machine's computation can be
combined with others. To coordinate this distributed data processing, we will discuss a
programming framework called MapReduce.

Creating a distributed data processing application with MapReduce combines many of the
ideas presented throughout this text. An application is expressed in terms of pure
functions that are used to map over a large dataset and then to reduce the mapped
sequences of values into a final result.

Familiar concepts from functional programming are used to maximal advantage in a
MapReduce program. MapReduce requires that the functions used to map and reduce the
data be pure functions. In general, a program expressed only in terms of pure functions
has considerable flexibility in how it is executed. Sub-expressions can be computed in
arbitrary order and in parallel without affecting the final result. A MapReduce application
evaluates many pure functions in parallel, reordering computations to be executed
efficiently in a distributed system.

The principal advantage of MapReduce is that it enforces a separation of concerns
between two parts of a distributed data processing application:

1. The map and reduce functions that process data and combine results.
2. The communication and coordination between machines.

The coordination mechanism handles many issues that arise in distributed computing,
such as machine failures, network failures, and progress monitoring. While managing these
issues introduces some complexity in a MapReduce application, none of that complexity is
exposed to the application developer. Instead, building a MapReduce application only
requires specifying the map and reduce functions in (1) above; the challenges of
distributed computation are hidden via abstraction.

4.7.1 MapReduce

The MapReduce framework assumes as input a large, unordered stream of input values of
an arbitrary type. For instance, each input may be a line of text in some vast corpus.
Computation proceeds in three steps.

1. A map function is applied to each input, which outputs zero or more intermediate
key-value pairs of an arbitrary type.
2. All intermediate key-value pairs are grouped by key, so that pairs with the same key
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can be reduced together.
3. A reduce function combines the values for a given key x; it outputs zero or more
values, which are each associated with x in the final output.

To perform this computation, the MapReduce framework creates tasks (perhaps on
different machines) that perform various roles in the computation. A map task applies the
map function to some subset of the input data and outputs intermediate key-value pairs. A
reduce task sorts and groups key-value pairs by key, then applies the reduce function to
the values for each key. All communication between map and reduce tasks is handled by
the framework, as is the task of grouping intermediate key-value pairs by key.

In order to utilize multiple machines in a MapReduce application, multiple mappers run in
parallel in a map phase, and multiple reducers run in parallel in a reduce phase. In between
these phases, the sort phase groups together key-value pairs by sorting them, so that all
key-value pairs with the same key are adjacent.

Consider the problem of counting the vowels in a corpus of text. We can solve this
problem using the MapReduce framework with an appropriate choice of map and reduce
functions. The map function takes as input a line of text and outputs key-value pairs in
which the key is a vowel and the value is a count. Zero counts are omitted from the output:
def count_vowels(line):
"""A map function that counts the vowels in a line."""
for vowel in 'aeiou':
count = line.count(vowel)
if count > 0:
emit(vowel, count)

The reduce function is the built-in sum functions in Python, which takes as input an iterator
over values (all values for a given key) and returns their sum.

4.7.2 Local Implementation

To specify a MapReduce application, we require an implementation of the MapReduce
framework into which we can insert map and reduce functions. In the following section, we
will use the open-source Hadoop implementation. In this section, we develop a minimal
implementation using built-in tools of the Unix operating system.

The Unix operating system creates an abstraction barrier between user programs and the
underlying hardware of a computer. It provides a mechanism for programs to communicate
with each other, in particular by allowing one program to consume the output of another. In
their seminal text on Unix programming, Kernigham and Pike assert that, ""The power of a
system comes more from the relationships among programs than from the programs
themselves."

A Python source file can be converted into a Unix program by adding a comment to the
first line indicating that the program should be executed using the Python 3 interpreter. The
input to a Unix program is an iterable object called standard input and accessed as
sys.stdin. Iterating over this object yields string-valued lines of text. The output of a Unix
program is called standard output and accessed as sys.stdout. The built-in print function
writes a line of text to standard output. The following Unix program writes each line of its
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input to its output, in reverse:

#!/usr/bin/env python3
import sys

for line in sys.stdin:
print(line.strip('\n')[::-11])

If we save this program to a file called rev.py, we can execute it as a Unix program. First,
we need to tell the operating system that we have created an executable program:

$ chmod u+x rev.py

Next, we can pass input into this program. Input to a program can come from another
program. This effect is achieved using the | symbol (called "pipe") which channels the
output of the program before the pipe into the program after the pipe. The program

nslookup outputs the host name of an IP address (in this case for the New York Times):

$ nslookup 170.149.172.130 | ./rev.py
moc.semityn.www

The cat program outputs the contents of files. Thus, the rev.py program can be used to
reverse the contents of the rev.py file:

$ cat rev.py | ./rev.py
3nohtyp vne/nib/rsu/!#

sys tropmi

:nidts.sys ni enil rof
)11-::[) 'n\'(pirts.enil(tnirp

These tools are enough for us to implement a basic MapReduce framework. This version
has only a single map task and single reduce task, which are both Unix programs
implemented in Python. We run an entire MapReduce application using the following
command:

$ cat input | ./mapper.py | sort | ./reducer.py

The mapper.py and reducer.py programs must implement the map function and reduce
function, along with some simple input and output behavior. For instance, in order to
implement the vowel counting application described above, we would write the following
count_vowels_ mapper.py pProgram:

#!/usr/bin/env python3

import sys
from mr import emit

def count_vowels(line):
"""A map function that counts the vowels in a line.
for vowel in 'aeiou':
count = line.count(vowel)
if count > 0:
emit(vowel, count)

for line in sys.stdin:



count_vowels(line)
In addition, we would write the following sum_reducer.py program:
#!/usr/bin/env python3

import sys
from mr import values by key, emit

for key, value iterator in values_ by key(sys.stdin):
emit(key, sum(value iterator))

The mr module is a companion module to this text that provides the functions emit to emit
a key-value pair and group_values_by_ key t0 group together values that have the same key.
This module also includes an interface to the Hadoop distributed implementation of
MapReduce.

Finally, assume that we have the following input file called haiku. txt:

Google MapReduce
Is a Big Data framework
For batch processing

Local execution using Unix pipes gives us the count of each vowel in the haiku:

$ cat haiku.txt | ./count vowels mapper.py | sort | ./sum reducer.py
L} 1 6

& 0O H- 0 o
= 0N O

4.7.3 Distributed Implementation

Hadoop is the name of an open-source implementation of the MapReduce framework that
executes MapReduce applications on a cluster of machines, distributing input data and
computation for efficient parallel processing. Its streaming interface allows arbitrary Unix
programs to define the map and reduce functions. In fact, our count_vowels_mapper.py and
sum_reducer.py can be used directly with a Hadoop installation to compute vowel counts
on large text corpora.

Hadoop offers several advantages over our simplistic local MapReduce implementation.
The first is speed: map and reduce functions are applied in parallel using different tasks on
different machines running simultaneously. The second is fault tolerance: when a task fails
for any reason, its result can be recomputed by another task in order to complete the
overall computation. The third is monitoring: the framework provides a user interface for
tracking the progress of a MapReduce application.

In order to run the vowel counting application using the provided mapreduce.py module,
install Hadoop, change the assignment statement of saboop to the root of your local

installation, copy a collection of text files into the Hadoop distributed file system, and then
run:

$ python3 mr.py run count vowels mapper.py sum reducer.py [input] [output]
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where [input] and [output] are directories in the Hadoop file system.

For more information on the Hadoop streaming interface and use of the system, consult
the Hadoop Streaming Documentation.

Continue: 4.8 Parallel Computing
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4.8 Parallel Computing

From the 1970s through the mid-2000s, the speed of individual processor cores grew at an
exponential rate. Much of this increase in speed was accomplished by increasing the clock
frequency, the rate at which a processor performs basic operations. In the mid-2000s,
however, this exponential increase came to an abrupt end, due to power and thermal
constraints, and the speed of individual processor cores has increased much more slowly
since then. Instead, CPU manufacturers began to place multiple cores in a single
processor, enabling more operations to be performed concurrently.

Parallelism is not a new concept. Large-scale parallel machines have been used for
decades, primarily for scientific computing and data analysis. Even in personal computers
with a single processor core, operating systems and interpreters have provided the
abstraction of concurrency. This is done through context switching, or rapidly switching
between different tasks without waiting for them to complete. Thus, multiple programs can
run on the same machine concurrently, even if it only has a single processing core.

Given the current trend of increasing the number of processor cores, individual
applications must now take advantage of parallelism in order to run faster. Within a single
program, computation must be arranged so that as much work can be done in parallel as
possible. However, parallelism introduces new challenges in writing correct code,
particularly in the presence of shared, mutable state.

For problems that can be solved efficiently in the functional model, with no shared mutable
state, parallelism poses few problems. Pure functions provide referential transparency,
meaning that expressions can be replaced with their values, and vice versa, without
affecting the behavior of a program. This enables expressions that do not depend on each
other to be evaluated in parallel. As discussed in the previous section, the MapReduce
framework allows functional programs to be specified and run in parallel with minimal
programmer effort.

Unfortunately, not all problems can be solved efficiently using functional programming. The
Berkeley View project has identified thirteen common computational patterns in science
and engineering, only one of which is MapReduce. The remaining patterns require shared
state.

In the remainder of this section, we will see how mutable shared state can introduce bugs
into parallel programs and a number of approaches to prevent such bugs. We will examine
these techniques in the context of two applications, a web crawler and a particle simulator.

4.8.1 Parallelism in Python

Before we dive deeper into the details of parallelism, let us first explore Python's support
for parallel computation. Python provides two means of parallel execution: threading and
multiprocessing.

Threading. In threading, multiple "threads" of execution exist within a single interpreter.
Each thread executes code independently from the others, though they share the same
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data. However, the CPython interpreter, the main implementation of Python, only interprets
code in one thread at a time, switching between them in order to provide the illusion of
parallelism. On the other hand, operations external to the interpreter, such as writing to a
file or accessing the network, may run in parallel.

The threading module contains classes that enable threads to be created and
synchronized. The following is a simple example of a multithreaded program:

>>> import threading

>>> def thread hello():
other = threading.Thread(target=thread say hello, args=())
other.start()
thread _say_hello()

>>> def thread say hello():
print('hello from', threading.current thread().name)

>>> thread hello()
hello from Thread-1
hello from MainThread

The Thread constructor creates a new thread. It requires a target function that the new
thread should run, as well as the arguments to that function. Calling start on a Thread
object marks it ready to run. The current_thread function returns the Thread object
associated with the current thread of execution.

In this example, the prints can happen in any order, since we haven't synchronized them in
any way.

Multiprocessing. Python also supports multiprocessing, which allows a program to spawn
multiple interpreters, or processes, each of which can run code independently. These
processes do not generally share data, so any shared state must be communicated
between processes. On the other hand, processes execute in parallel according to the
level of parallelism provided by the underlying operating system and hardware. Thus, if the
CPU has multiple processor cores, Python processes can truly run concurrently.

The multiprocessing module contains classes for creating and synchronizing processes.
The following is the hello example using processes:

>>> import multiprocessing

>>> def process_hello():
other = multiprocessing.Process(target=process_say hello, args=())
other.start()
process_say hello()

>>> def process_say hello():
print('hello from', multiprocessing.current process().name)

>>> process_hello()
hello from MainProcess
>>> hello from Process-1

As this example demonstrates, many of the classes and functions in multiprocessing are



analogous to those in threading. This example also demonstrates how lack of
synchronization affects shared state, as the display can be considered shared state. Here,
the interpreter prompt from the interactive process appears before the print output from
the other process.

4.8.2 The Problem with Shared State

To further illustrate the problem with shared state, let's look at a simple example of a
counter that is shared between two threads:

import threading
from time import sleep

counter = [0]

def increment():
count = counter[0]
sleep(0) # try to force a switch to the other thread
counter[0] = count + 1

other = threading.Thread(target=increment, args=())
other.start()

increment ()

print('count is now: ', counter[0])

In this program, two threads attempt to increment the same counter. The CPython
interpreter can switch between threads at almost any time. Only the most basic operations
are atomic, meaning that they appear to occur instantly, with no switch possible during
their evaluation or execution. Incrementing a counter requires multiple basic operations:
read the old value, add one to it, and write the new value. The interpreter can switch
threads between any of these operations.

In order to show what happens when the interpreter switches threads at the wrong time,
we have attempted to force a switch by sleeping for 0 seconds. When this code is run, the
interpreter often does switch threads at the s1eep call. This can result in the following
sequence of operations:
Thread 0 Thread 1
read counter[0]: O

read counter[0]: O
calculate 0 + 1: 1
write 1 -> counter[0]

calculate 0 + 1: 1
write 1 -> counter[0]

The end result is that the counter has a value of 1, even though it was incremented twice!
Worse, the interpreter may only switch at the wrong time very rarely, making this difficult to
debug. Even with the s1eep call, this program sometimes produces a correct count of 2
and sometimes an incorrect count of 1.

This problem arises only in the presence of shared data that may be mutated by one
thread while another thread accesses it. Such a conflict is called a race condition, and it is
an example of a bug that only exists in the parallel world.



In order to avoid race conditions, shared data that may be mutated and accessed by
multiple threads must be protected against concurrent access. For example, if we can
ensure that thread 1 only accesses the counter after thread 0 finishes accessing it, or vice
versa, we can guarantee that the right result is computed. We say that shared data is
synchronized if it is protected from concurrent access. In the next few subsections, we will
see multiple mechanisms providing synchronization.

4.8.3 When No Synchronization is Necessary

In some cases, access to shared data need not be synchronized, if concurrent access
cannot result in incorrect behavior. The simplest example is read-only data. Since such
data is never mutated, all threads will always read the same values regardless when they
access the data.

In rare cases, shared data that is mutated may not require synchronization. However,
understanding when this is the case requires a deep knowledge of how the interpreter and
underlying software and hardware work. Consider the following example:

items = []
flag = []

def consume():
while not flag:
pass
print('items is', items)

def produce():
consumer = threading.Thread(target=consume, args=())
consumer.start()
for i in range(10):
items.append(i)
flag.append('go')

produce()

Here, the producer thread adds items to items, while the consumer waits until £1ag is non-
empty. When the producer finishes adding items, it adds an element to f1ag, allowing the
consumer to proceed.

In most Python implementations, this example will work correctly. However, a common
optimization in other compilers and interpreters, and even the hardware itself, is to reorder
operations within a single thread that do not depend on each other for data. In such a
system, the statement £1ag.append('go') may be moved before the loop, since neither
depends on the other for data. In general, you should avoid code like this unless you are
certain that the underlying system won't reorder the relevant operations.

4.8.4 Synchronized Data Structures

The simplest means of synchronizing shared data is to use a data structure that provides
synchronized operations. The queue module contains a gueue class that provides



synchronized first in, first out access to data. The put method adds an item to the gueue,
and the get method retrieves an item. The class itself ensures that these methods are
synchronized, so items are not lost no matter how thread operations are interleaved. Here
is a producer/consumer example that uses a queue:

from queue import Queue
queue = Queue()

def synchronized consume():
while True:
print('got an item:', queue.get())
queue.task done()

def synchronized produce():
consumer = threading.Thread(target=synchronized consume, args=())
consumer.daemon = True
consumer.start()
for i in range(1l0):
queue.put (i)
queue.join()

synchronized produce()

There are a few changes to this code, in addition to the gueue and get and put calls. We
have marked the consumer thread as a daemon, which means that the program will not
wait for that thread to complete before exiting. This allows us to use an infinite loop in the
consumer. However, we do need to ensure that the main thread exits, but only after all
items have been consumed from the gueue. The consumer calls the task_done method to
inform the queue that it is done processing an item, and the main thread calls the join
method, which waits until all items have been processed, ensuring that the program exits
only after that is the case.

A more complex example that makes use of a gueue is a parallel web crawler that searches
for dead links on a website. This crawler follows all links that are hosted by the same site,
so it must process a number of URLs, continually adding new ones to a gueue and
removing URLs for processing. By using a synchronized gueue, multiple threads can safely
add to and remove from the data structure concurrently.

4.8.5 Locks

When a synchronized version of a particular data structure is not available, we have to
provide our own synchronization. A lock is a basic mechanism to do so. It can be acquired
by at most one thread, after which no other thread may acquire it until it is released by the
thread that previously acquired it.

In Python, the threading module contains a Lock class to provide locking. A Lock has
acquire and release methods to acquire and release the lock, and the class guarantees
that only one thread at a time can acquire it. All other threads that attempt to acquire a lock
while it is already being held are forced to wait until it is released.

For a lock to protect a particular set of data, all the threads need to be programmed to
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follow a rule: no thread will access any of the shared data unless it owns that particular
lock. In effect, all the threads need to "wrap" their manipulation of the shared data in
acquire and release calls for that lock.

In the parallel web crawler, a set is used to keep track of all URLs that have been
encountered by any thread, so as to avoid processing a particular URL more than once
(and potentially getting stuck in a cycle). However, Python does not provide a synchronized
set, so we must use a lock to protect access to a normal set:

seen = set()
seen_lock = threading.Lock()

def already seen(item):
seen_lock.acquire()
result = True
if item not in seen:
seen.add(item)
result = False
seen_lock.release()
return result

A lock is necessary here, in order to prevent another thread from adding the URL to the set
between this thread checking if it is in the set and adding it to the set. Furthermore, adding
to a set is not atomic, so concurrent attempts to add to a set may corrupt its internal data.

In this code, we had to be careful not to return until after we released the lock. In general,
we have to ensure that we release a lock when we no longer need it. This can be very
error-prone, particularly in the presence of exceptions, so Python provides a with
compound statement that handles acquiring and releasing a lock for us:
def already_seen(item):
with seen_lock:
if item not in seen:
seen.add(item)

return False
return True

The with statement ensures that seen_1ock is acquired before its suite is executed and that
it is released when the suite is exited for any reason. (The with statement can actually be
used for operations other than locking, though we won't cover alternative uses here.)

Operations that must be synchronized with each other must use the same lock. However,
two disjoint sets of operations that must be synchronized only with operations in the same
set should use two different lock objects to avoid over-synchronization.

4.8.6 Barriers

Another way to avoid conflicting access to shared data is to divide a program into phases,
ensuring that shared data is mutated in a phase in which no other thread accesses it. A
barrier divides a program into phases by requiring all threads to reach it before any of them
can proceed. Code that is executed after a barrier cannot be concurrent with code
executed before the barrier.
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In Python, the threading module provides a barrier in the form of the the wait method of a
Barrier instance:

counters = [0, 0]
barrier = threading.Barrier(2)

def count(thread num, steps):
for i in range(steps):
other = counters[l - thread num]
barrier.wait() # wait for reads to complete
counters|[thread num] = other + 1
barrier.wait() # wait for writes to complete

def threaded_count(steps):
other = threading.Thread(target=count, args=(1l, steps))
other.start()
count (0, steps)
print('counters:', counters)

threaded count(10)

In this example, reading and writing to shared data take place in different phases,
separated by barriers. The writes occur in the same phase, but they are disjoint; this
disjointness is necessary to avoid concurrent writes to the same data in the same phase.
Since this code is properly synchronized, both counters will always be 10 at the end.

The multithreaded particle simulator uses a barrier in a similar fashion to synchronize
access to shared data. In the simulation, each thread owns a number of particles, all of
which interact with each other over the course of many discrete timesteps. A particle has a
position, velocity, and acceleration, and a new acceleration is computed in each timestep
based on the positions of the other particles. The velocity of the particle must be updated
accordingly, and its position according to its velocity.

As with the simple example above, there is a read phase, in which all particles' positions
are read by all threads. Each thread updates its own particles' acceleration in this phase,
but since these are disjoint writes, they need not be synchronized. In the write phase, each
thread updates its own particles' velocities and positions. Again, these are disjoint writes,
and they are protected from the read phase by barriers.

4.8.7 Message Passing

A final mechanism to avoid improper mutation of shared data is to entirely avoid
concurrent access to the same data. In Python, using multiprocessing rather than
threading naturally results in this, since processes run in separate interpreters with their
own data. Any state required by multiple processes can be communicated by passing
messages between processes.

The pipe class in the multiprocessing module provides a communication channel between
processes. By default, it is duplex, meaning a two-way channel, though passing in the
argument rFalse results in a one-way channel. The send method sends an object over the
channel, while the recv method receives an object. The latter is blocking, meaning that a
process that calls recv will wait until an object is received.
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The following is a producer/consumer example using processes and pipes:

def process_consume(in_pipe):
while True:
item = in pipe.recv()
if item is None:
return
print('got an item:', item)

def process_produce():
pipe = multiprocessing.Pipe(False)
consumer = multiprocessing.Process(target=process_consume, args=(pipe[0],))
consumer.start()
for i in range(10):
pipe[l].send(1)
pipe[l].send(None) # done signal

process_produce()

In this example, we use a none message to signal the end of communication. We also
passed in one end of the pipe as an argument to the target function when creating the
consumer process. This is necessary, since state must be explicitly shared between
processes.

The multiprocess version of the particle simulator uses pipes to communicate particle
positions between processes in each timestep. In fact, it uses pipes to set up an entire
circular pipeline between processes, in order to minimize communication. Each process
injects its own particles' positions into its pipeline stage, which eventually go through a full
rotation of the pipeline. At each step of the rotation, a process applies forces from the
positions that are currently in its own pipeline stage on to its own particles, so that after a
full rotation, all forces have been applied to its particles.

The multiprocessing module provides other synchronization mechanisms for processes,
including synchronized queues, locks, and as of Python 3.3, barriers. For example, a lock
or a barrier can be used to synchronize printing to the screen, avoiding the improper
display output we saw previously.

4.8.8 Synchronization Pitfalls

While synchronization methods are effective for protecting shared state, they can also be
used incorrectly, failing to accomplish the proper synchronization, over-synchronizing, or
causing the program to hang as a result of deadlock.

Under-synchronization. A common pitfall in parallel computing is to neglect to properly
synchronize shared accesses. In the set example, we need to synchronize the membership
check and insertion together, so that another thread cannot perform an insertion in
between these two operations. Failing to synchronize the two operations together is
erroneous, even if they are separately synchronized.

Over-synchronization. Another common error is to over-synchronize a program, so that
non-conflicting operations cannot occur concurrently. As a trivial example, we can avoid all
conflicting access to shared data by acquiring a master lock when a thread starts and only


http://localhost:8080/examples/parallel/particle.py.html

releasing it when a thread completes. This serializes our entire code, so that nothing runs
in parallel. In some cases, this can even cause our program to hang indefinitely. For
example, consider a consumer/producer program in which the consumer obtains the lock
and never releases it. This prevents the producer from producing any items, which in turn
prevents the consumer from doing anything since it has nothing to consume.

While this example is trivial, in practice, programmers often over-synchronize their code to
some degree, preventing their code from taking complete advantage of the available
parallelism.

Deadlock. Because they cause threads or processes to wait on each other,
synchronization mechanisms are vulnerable to deadlock, a situation in which two or more
threads or processes are stuck, waiting for each other to finish. We have just seen how
neglecting to release a lock can cause a thread to get stuck indefinitely. But even if threads
or processes do properly release locks, programs can still reach deadlock.

The source of deadlock is a circular wait, illustrated below with processes. No process can
continue because it is waiting for other processes that are waiting for it to complete.

whaiting for

waiting for waiting for

As an example, we will set up a deadlock with two processes. Suppose they share a
duplex pipe and attempt to communicate with each other as follows:

def deadlock(in_ pipe, out pipe):
item = in pipe.recv()
print('got an item:', item)
out pipe.send(item + 1)

def create deadlock():
pipe = multiprocessing.Pipe()
other = multiprocessing.Process(target=deadlock, args=(pipe[0], pipe[l]))
other.start()
deadlock(pipe[l], pipe[0])

create_deadlock()

Both processes attempt to receive data first. Recall that the recv method blocks until an
item is available. Since neither process has sent anything, both will wait indefinitely for the



other to send it data, resulting in deadlock.

Synchronization operations must be properly aligned to avoid deadlock. This may require
sending over a pipe before receiving, acquiring multiple locks in the same order, and
ensuring that all threads reach the right barrier at the right time.

4.8.9 Conclusion

As we have seen, parallelism presents new challenges in writing correct and efficient code.
As the trend of increasing parallelism at the hardware level will continue for the foreseeable
future, parallel computation will become more and more important in application
programming. There is a very active body of research on making parallelism easier and
less error-prone for programmers. Our discussion here serves only as a basic introduction
to this crucial area of computer science.
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