
Bond-Graph Modeling  

I
n the 19th century, Lord Kelvin and James Clerk
Maxwell both observed that a wide range of phenome-
na give rise to similar forms of equations, finding
analogies between heat flow and electric force and
between lines of force and fluid streamlines. In the

1940s and 1950s, H.M. (Hank) Paynter of MIT worked on
interdisciplinary engineering projects including hydroelec-
tric plants, analog and digital computing, nonlinear
dynamics, and control [1]. Through this experience, he

observed that similar forms of equations are generated by
dynamic systems in a wide variety of domain (for example
electrical, fluid, and mechanical); in other words, such sys-
tems are analogous. Paynter incorporated the notion of an
energy port into his methodology, and thus bond graphs
were invented. Since that time, his group and many others
have developed the basic concepts of bond-graph model-
ing into a mature methodology.

The bond-graph method is a graphical approach to
modeling in which component energy ports are connect-
ed by bonds that specify the transfer of energy between
system components. Power, the rate of energy transport
between components, is the universal currency of physi-
cal systems.

The graphical nature of bond graphs separates the
system structure from the equations, making bond

graphs ideal for visualizing the essential characteris-
tics of a system. Indeed, by creating bond graphs,

designing and analyzing the structure of a sys-
tem—perhaps the most important part of the
modeling task—can often be undertaken using
only a pencil and paper. Modelers can thus
focus on the relationships among components
and subsystems rather than the implementa-
tion details of their particular modeling soft-
ware. Even before a computer is used, bond
graphs can provide an engineer with infor-
mation about constrained states, algebraic
loops, and the benefits and consequences of
potential approximations and simplifications.

Many computer-based modeling tools are
available for generating and processing bond
graphs, see “Further Reading.” These tools
generally have capabilities that extend far

beyond those of traditional block-diagram
software, including generation of symbolic rep-

resentations, model inversion, and parametric
identification as well as the ability to produce
simulations, frequency responses, and other

design aids. Bond-graph models can therefore be
used by engineers not only to perform straightfor-

ward numerical analysis but also, more importantly,
to gain qualitative insight.
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This article has two purposes. First, we provide a tuto-
rial introduction to bond graphs using examples that are
familiar to control engineers. Second, the article is intend-
ed to motivate readers to apply the bond-graph approach
themselves and to read more on the topic.

This article includes two case studies. The first case
study is described in “Case Study 1: Laboratory Experi-
ment,” while the second is described in the section
“Case Study 2: An Aircraft Fuel System.” The early sec-
tions of this tutorial cover enough of the bond-graph
method to model the system in Case Study 1. The later
sections introduce more advanced topics required for
Case Study 2.

Italic text (like this) highlights material that is directly
applicable to the sidebar “Case Study 1.”

ANALOGIES
Bond-graph modeling is based on three types of analogies,
namely, signal analogies, component analogies, and con-
nection analogies.

Signal Analogies
Table 1 shows four signal categories with examples from
four engineering domains:

» effort signals, with the generic symbol e, including
electrical voltage and mechanical force

» flow signals, with the generic symbol f , including
electrical current and mechanical velocity

» integrated effort signals, with the generic symbol p,
including electrical lines of flux and mechanical
(translational and angular) momentum

» integrated flow signals, with the generic symbol q,
including electrical charge and mechanical displacement.

Some entries in the table are less familiar but neverthe-
less provide a guide for the systematic choice of signals for
system modeling. Additional domains, including magnetic
and thermal, can also be incorporated in this scheme. A
key insight is that the product of the effort and flow sig-
nals in each domain is power, that is,

effort × flow = power. (1)

For this reason, effort and flow signal pairs are deemed
to be carried by the single power bond of Figure 1(a). The
direction of the half-arrow indicates the positive direction
of energy transport; in Figure 1(a), energy transport from
left to right is regarded as positive.

The system shown in Figure S1 of Case Study 1 is driven by
electrical power (voltage × current), which is converted to rotation-
al mechanical power (torque × angular velocity) by a dc motor.

It should be noted that the half arrow does not denote
an input or output in the same way as an arrow on a block
diagram. Inputs and outputs are assigned by causal
strokes, which are introduced later in the section “Causality
and Block Diagrams.”

Figure 1(b) shows the active bond, which carries either
effort or flow. The active bond thus corresponds to a block-
diagram signal and can therefore act as an interface
between a system modeled as a bond graph and another
system modeled as a block diagram.

Component Analogies
Table 2 lists one-port bond-graph components with analo-
gous examples from four engineering domains. For exam-
ple, the generic

» Se component, which can correspond to an ideal
voltage source or an applied force, is a source of
effort

» Sf component, which can correspond to an ideal cur-
rent source or an applied velocity, is a source of flow

» De component, which can correspond to a voltmeter
or a force sensor, is a detector of effort

» Df component, which can correspond to an ammeter
or a tachometer, is a detector of flow

» R component, which can correspond to an electrical
resistor or a mechanical damper, dissipates energy

» C component, which can correspond to an electrical
capacitor or a mechanical spring (or compliance),
stores energy

» I component, which can correspond to an electrical
inductor or a mechanical mass, stores energy

» SS components (not shown in table) model colocat-
ed sensor-actuator pairs: Se-Df or Sf-De. These
components also represent energy ports of com-
pound components.

In the linear case, the corresponding equations for the
R, C, and I components in terms of the generic variables of
Table 1 are, respectively,
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F igure S1(a) shows a laboratory experiment comprising a flexi-

ble beam driven by a dc motor through a gearbox. As with any

physical system, it is up to the engineer to decide which effects to

include and which to ignore. In this case, following the experimen-

tal manual, the main approximations are:

» The armature inductance of the dc motor is ignored.

» The beam is approximated by a rotational mass-spring

system analogous to that of Figure 4(a).

» The gearbox is assumed to be rigid and free of

backlash.

FIGURE S1  Case Study 1: a laboratory experiment. (a) The Quanser flexible beam experiment. The dc motor drives the flexible beam
through a gearbox, a strain gauge measures the beam deflection, and a potentiometer measures the motor angular position. (b) Sys-
tem schematic diagram. For simplicity, the system is approximated as indicated in this mixed electrical/mechanical schematic dia-
gram; in particular, the armature inductance is ignored, and the beam is given a lumped approximation. (c) The system bond graph.
R :ra, GY:k, I :mm and R :rm model the motor; TF:n, I :mg, and R :rg model the gearbox; and C :cb, I :mb, and R :rb model the beam.
Sf:y and Se :yb measure �b and τb, respectively. (d) A simplified bond graph. The drive components are combined into the four
equivalent components I :me, R :re, R :r0, and Se :u0.
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Case Study 1: A Laboratory Experiment

R { e = rf, (2)

C
{

e = q
c , (3)

q̇ = f, (4)

I
{

f = p
m , (5)

ṗ = e, (6)

where r, c, and m are constants describing the correspond-
ing physical system. In the electrical domain, (2) corre-
sponds to Ohm’s law and (3) to Coulomb’s law; in the
mechanical domain, (3) corresponds to Hooke’s law, while
(5) corresponds to Newton’s second law.

Because the same type of component usually occurs
more than once in a given system, the colon “:” notation is
used to distinguish between multiple instances of each

component type. In particular, the symbol preceding the
colon refers to the component type, while the symbol fol-
lowing the colon labels the particular instance. Thus C :c1

refers to a C component labeled c1, which is equivalent to
placing the label c1 adjacent to the symbol for a capacitor
in an electrical circuit diagram.

Connection Analogies
Two components can be connected by a power bond
thus giving them the same effort and flow. Figure 2(a)
shows two mechanical components, while Figure 2(b)
shows two analogous electrical components. Each of
these physical systems can be represented by the bond
graph of Figure 2(c).
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Figure S1(b) shows the corresponding schematic. The

left-hand part shows the conventional electrical model of the

motor armature comprising the armature resistance ra driven

by the applied voltage V and the back EMF Va. Since V is the

system input, it is labeled by the conventional symbol u. The

connection between the electrical and mechanical systems is

given by the usual dc motor equations

τm = kmia,

Va = km�m.

Figure S1(c) gives the bond graph corresponding to this

apparatus.

Using the simplification rules of Figure 9, Figure S1(c)

can be simplified to give Figure S1(d), where the GY, TF,

and one of the I components have been removed. In terms

of the original components, the components of the simpli-

fied system are

r0 = k2
m

n2ra
,

re = rg + rm

n2
,

me = mg + mm

n2
,

u0 = n
km

u.

Although the simplified bond graph retains the same input-out-

put dynamics as the original system, it is easier to understand.

For example, it is clear that R :r0 acts as a natural derivative

controller as in Figure 11.

Figure S2 gives the frequency response relating the two

outputs y = �b and yb = τb to the equivalent system input u0.

The frequency response, which is generated automatically

from the bond graph and the numerical values of Table S1, is

the first step in the control-design process.

FIGURE S2  Frequency response for the Quanser experiment.
The numerical values of Table S1 combined with the bond graph
of Figure S1 yield the frequency response of y = �b and
yb = τb, measured in rad/s and N-m, respectively, to the equiva-
lent system input u0, measured in rad/s; the resonant peak cor-
responds to the flexure natural frequency of about 20 rad/s.
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TABLE S1 Numerical values. These numerical values
corresponding to each bond-graph component in 
Figure S1 are taken from the Quanser manual [14].

Component Value Units
km 0.00767 N-m/A
ra 2.6 �

mm 3.87e−7 Kg-m2

rm 0.0 N-m-s/rad
n 1

70
mg 2.5200e−5 Kg-m2

rg 0.0 N-m-s/rad
cb 2 rad/N-m
mb 0.0012368 Kg-m2

TABLE 1 Analogous signals. Systematic modeling, including the bond-graph approach, uses the concept
of analogous signals to bring together different physical domains. One such analogy is the effort/flow analogy displayed here,
where each row contains analogous signals and each column corresponds to a domain. In each case, effort × flow= power.

Bond Graph Translation Rotation Electrical Hydraulic

Effort Force Torque Voltage Pressure
e F N τ N-m V V P Pa

Flow Velocity Angular velocity Current Flow
f v m/s � rad/s I A Q m3/s

Integrated effort Momentum Angular momentum Lines of flux Momentum per unit area
p = ∫

edt p kg-m/s h kg-m2/s λ V-s p kg-m/s

Integrated flow Position Angle Charge Volume
q = ∫

f dt x m θ rad q C V m3
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Because there are only two components, the electrical
components of Figure 2(b) share both voltage and current.
But, more generally, electrical connections are either paral-
lel [Figure 3(a)] or series [Figure 3(b)]. 

Figure S1 of Case Study 1 includes examples of both mechan-
ical (damper) and electrical (resistor) R components.

The parallel connection obeys Kirchhoff’s voltage law,
whereas the series connection obeys Kirchhoff’s current law.
The bond-graph approach uses a 0 junction to model a paral-
lel electrical connection [Figure 3(c)] and a 1 junction [Figure
3(d)] to model a series electrical connection. However, the
series/parallel analogy can be misleading in the mechanical
and other non-electrical domains; a more useful abstraction
is to view an electrical parallel connection as a common-
effort or 0 connection and an electrical series connection as a

common-flow or 1 connection. The effort on each bond
impinging on a 0 junction is equal, while the flows on these
bonds sum to zero. A 0 junction with m bonds in and n
bonds out is therefore described by the equation pair

0




ein
1 =· · ·= ein

m = eout
1 =· · ·= eout

n , (7)

∑m
i=1 f in

i − ∑n
j=1 f out

j = 0, (8)

where the efforts e in
1 , . . . , e in

m and the flows f in
1 , . . . , f in

n
are carried on bonds pointing into the junction, while the
efforts e out

1 , . . . , e out
n and the flows f out

1 , . . . , f out
n are car-

ried on bonds pointing out of the junction. Likewise, the
efforts on a 1 junction sum to zero while the flows are all
equal, so a dual junction is described by the equation pair

1




f in
1 = · · · = f in

m = f out
1 = · · · = f out

n , (9)

∑m
i=1 e in

i − ∑n
j=1 e out

j = 0. (10)

The system shown in Figure S1 of Case Study 1 contains an
electrical 1 junction carrying armature current as well as several
mechanical 1 junctions carrying velocity.

The symbols 0 and 1 are chosen to be neutral with
respect to the physical domain.

Simple RCI System
Figure 4(a)–(c) shows analogous systems drawn from three
physical domains. Since the systems are analogous, they
share the bond graph of Figure 4(d). As can be seen from Fig-
ure 4(a) and (c), the concepts of parallel and series connection
can be misleading, whereas the concepts of common effort
and flow junctions provide a domain-neutral formulation.

Power Conversion with Transformers and Gyrators
The effort and flow variables within each physical domain
of Table 1 have different units and therefore cannot be
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FIGURE 1  Types of bond. (a) A power bond. The effort and flow sig-
nal pair of Table 1 are carried by a single power bond. The half arrow
indicates the direction of positive power transport. The signals at
opposite ends are equal, that is, e2 = e1 and f2 = f1. Note that
effort × flow = e1 f1 = e2 f2 = power. (b) An active bond that carries
either effort or flow. The active bond, which corresponds to a block-
diagram signal, can act as an interface between a system modeled
as a bond graph and another system modeled as a block diagram.
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f
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TABLE 2 Analogous components with one energy port. The analogous signals of Table 1 lead to the analogous
components of this table; the first column gives the generic bond-graph component, while the remaining columns
give the domain-specific analogues.

Bond Graph Translation Rotation Electrical Hydraulic

External
Se Applied force Applied torque Applied voltage Applied pressure
De Force sensor Torque sensor Voltmeter Pressure sensor

F N T N/m V V P Pa
Sf Applied velocity Applied rotation Applied current Applied flow
Df Speedometer Tachometer Ammeter Flow meter

v m/s ω rad/s i A Q m3/s

1 port
C Spring Torsional spring Capacitor Accumulator

K N/m K N-m/rad C F K Pa/m3

I Mass Moment of inertia Inductor Flow inertia
m kg J kg-m2 L H I kg/m4

R Damper Rot. Damper Resistor Restrictor
d N-s/m d N-m-s/rad R � K Pa-s/m3
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directly connected. However, since power is the universal
currency of physical systems, the power-converting bond-
graph components TF (a generic transformer) and GY (a
generic gyrator) of Figure 5(c) and (d) provide a means for
converting power and thus connecting different domains.
The TF component generalizes an electrical transformer,
which has the property that the
ratio of voltages (efforts) at the
two terminals is the inverse of the
ratio of current, which is consis-
tent with the fact that power is
conserved in the sense that the
instantaneous power at the input
port equals the instantaneous
power at the output port at each
instant of time. Figure 5(a)
shows a physical system that, in
idealized form, corresponds to
the TF component of Figure 5(c).
Additional examples of physical
components with an ideal TF
representation include a piston for
mechanical-to-hydraulic power
conversion and a rack-and-pinion
gear converting translational to
rotational power.

The GY component is the
same as the TF component inso-
far as power is conserved; the dif-
ference is that flow at one port
depends on effort at the other,
and vice versa. Figure 5(b) shows
a physical system that, in ideal-
ized form, corresponds to the GY
component of Figure 5(d). The
name gyrator arises from the
property of a gyroscope that
angular velocity (flow) is convert-
ed into torque (effort).

In the linear case, the TF and
GY components have the equations

TF
{

e2 = ne2, (11)

f1 = nf2, (12)

GY
{

e2 = kf1, (13)

e1 = kf2, (14)

where n and k are nondimension-
al constants describing the corre-
sponding physical system. The
pairs (11)–(12) and (13)–(14) both
describe energy-conserving com-
ponents since, in both cases, the
input and output power is the
same, that is, e2 f2 = e1 f1.

The system shown in Figure S1 of Case Study 1 has a GY
component representing conversion of electrical to mechanical
power within a dc motor as well as a TF component (a gear
ratio) representing conversion of mechanical power within a
gearbox. In each case, losses are accounted for using R compo-
nents, which dissipate power.
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FIGURE 3  Connecting three components. (a) A parallel connection. This connection obeys Kirch-
hoff’s voltage law; the voltage (effort) is common. (b) A series connection. This connection obeys
Kirchhoff’s current law; the current (flow) is common (c) Bond-graph generalization of diagram
(a). In a 0, or common-effort, junction, the efforts are equal and the flows sum to zero, that is,
e1 = e2 = e3, f1 − f2 − f3 = 0. (d) Bond-graph generalization of diagram (b). In a 1, or com-
mon-flow, junction, the flows are equal and the efforts sum to zero, that is, f1 = f2 = f3 ,
e1 − e2 − e3 = 0.
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FIGURE 2  Connecting two components. (a) A mechanical mass m and spring with compliance c
are connected together; the mass and spring share the same velocity (flow) v2 = v1 and the
same action and reaction (effort) F1 = F2. (b) An electrical inductor with inductance m and capac-
itor with capacitance c are connected together; the components share the same current (flow)
i 2 = i 1 and voltage (effort) V1 = V2. (c) The bond graph I:m and C:c components are connected
together using the power bond of Figure 1(a); these components share a flow f2 = f1 and effort
e1 = e2. The colon notation I:m and C:c associates the label m with the I component and the
label c with the C component. The color coding is used to help interpretation; it is not part of the
bond-graph method.
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CAUSALITY AND
BLOCK DIAGRAMS
Although block diagrams are famil-
iar to control engineers, the sidebar
“Why Bond Graphs Are Better than
Block Diagrams” explains that
block diagrams have an unfortunate
drawback, namely, they represent
assignment statements rather than
equations. In other words, a block
diagram cannot be drawn until the
inputs and outputs of each compo-
nent are specified. For example, the
upper right-hand part of Figure 6(a)
shows an electrical resistor corre-
sponding to the equation V = ri.
Two possible block diagrams are
shown below this component,
where one has voltage (effort) out-
put and corresponds to the assign-
ment statement V := ri, while the
other has current (flow) output and
corresponds to the assignment
statement i := (1/r)V . In contrast,
the bond-graph representation in
the upper left-hand part of Figure
6(a) is acausal and represents an
equation. The addition of a causal
stroke in each of the two lower
bond graphs assigns the input and
output of each R component. This
causal assignment is not part of the
initial modeling but is added later.
This approach has the important
advantage that bond-graph compo-
nents are reusable within different
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FIGURE 5  Transformers and gyrators. (a) A simple gearbox. Rotational mechanical power is converted between two shafts with gear ratio
n > 1; the device corresponds to the transformer (TF) bond graph of (c). (b) a dc motor with power conversion between electrical terminals
and the mechanical shaft, corresponding to the gyrator (GY) bond graph of (d). (c) The TF component provides power conversion such that
e1 = ne2 and f1 = nf2. (d) The GY component provides power conversion such that e2 = kf1 and e1 = kf2, where k is the back EMF con-
stant of the motor.
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f2 = Ω2f1 = Ω1

e1 = τ1

(a)

(c) (d)

(b)

FIGURE 4  Analogous second-order systems. (a) Mechanical system comprising a trolley labeled
m1, a spring labeled k1,and a damper labeled r1. (b) Analogous electrical system comprising an
electrical inductor labeled m1, a capacitor labeled c1, and a resistor labeled r1. (c) Analogous
hydraulic system, comprising a tank with an outlet pipe that has both resistive and inertial charac-
teristics, corresponding to a flow-dependent pressure drop and the fluid momentum. (d) Bond
graph representing the mechanical, electrical, and hydraulic systems. Each system has two ener-
gy ports, one at the left and one at the right, each corresponding to the domain-specific effort/flow
pair of Table 1. Analogous components are the same color, the blue italic text indicating the sig-
nals in each case. Component C :c1 models extension of the spring, accumulation of charge in the
capacitor, or storage of fluid in the tank. It would typically be parameterized by the spring stiffness
k in the mechanical domain, by capacitance C in the electrical domain, and by tank cross-sectional
area A and fluid density ρ in the hydraulic domain. Component I :m1 models the momentum of the
trolley, the lines of the flux in the inductor, or the momentum of fluid in the pipe. It would typically
be parameterized by the trolley mass m, electrical inductance L , or by the pipe length l and densi-
ty ρ of the fluid within it. Component R :r1 models the friction of the damper, the resistance of the
resistor, or the friction within the pipe. It is typically parameterized by a damping coefficient b, by an
electrical resistance R, or by a hydraulic loss coefficient CD and orifice cross-sectional area A.
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causal contexts, whereas block-
diagram components are not.
While the bond-graph approach
thus has one model for a resistor,
the block-diagram approach has
two. In bond-graph terminology,
the middle R imposes effort and
has flow imposed on it, whereas
the lower R imposes flow and has
effort imposed on it.

Because the C component of
Figure 6(b) is dynamic, the distinc-
tion between the two forms of
causality is more significant. In
particular, the middle diagram
corresponds to integral causality,
while the lower corresponds to
derivative causality. The former is
preferred if we wish to have a
state-space system representation.
The I component is similar to the
C component of Figure 6(b) but
with e and f reversed.

Figure 7(a) is the causally com-
plete equivalent of Figure 4(d),
Figure 7(b) is the corresponding
block diagram, and the following
comments explain the details:

» The C and I components
are in preferred integral
causality; for the C compo-
nent, this relation implies
effort out and flow in,
whereas, for the I compo-
nent, this relation implies
flow out and effort in.

» The R component has effort
output since the corre-
sponding flow is caused by
the I component.

» The 0 junction has exactly
one bond imposing effort
on it, whereas the 1 junc-
tion has exactly one bond
imposing flow on it.

» The 0 junction of Figure 7(a)
corresponds to the first sum-
mation block of Figure 7(b)
and the connection to the
second summation block.

» The 1 junction of Figure 7(a)
corresponds to the second
summation block of Figure
7(b) and the various con-
nections involving f1.

FIGURE 6  Component causality. (a) R. The topmost bond is acausal and represents an equation,
for which the corresponding electrical component is shown. The middle bond has a causal stroke
(perpendicular end-bar) indicating that e is the output, while the lower bond has a causal stroke
indicating that f is the output. Because of the causal stroke, these two bonds represent assign-
ment statements rather than equations. The corresponding block diagrams for these assignment
statements are shown. (b) C. This component is similar to the R component except that the equa-
tion is differential, not algebraic. The middle diagram shows integral causality, while the lower dia-
gram shows derivative causality. (c) I. This component is similar to the C component but with e
and f reversed. The middle diagram shows derivative causality, while the lower diagram shows
integral causality.
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Why Bond Graphs Are Better Than Block Diagrams
» Acausal

•  Equation based

•  Causality, that is component input and

output, determined after modeling

•  Causality issues clear

» Energy conserving

•  Bonds convey power

•  Automatically obeys laws of physics

» Compact

•  Each bond conveys two related signals

•  Connections are localized

•  Components are localized

•  Topology is closer to the physical system

•  Graphical depiction of sign convention

» Reusable subsystems

•  Subsystem causality adapts in response

to impinging subsystems
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Causal Assignment
Abstracting the physical system as an acausal bond graph
provides a complete description of the corresponding model.
However, for the purposes of analysis, there are many ways
of representing the system as a set of equations, and each
such representation has its own particular uses. For example,
the control engineer typically uses a state-space representa-
tion for system analysis and simulation, whereas the
mechanical engineer may prefer a Lagrangian representation
and the mathematician may prefer a Hamiltonian represen-
tation. Each of these representations corresponds to a partic-
ular causality and thus each representation can be extracted
by imposing a particular pattern of causal strokes on the
acausal bond graph [2], a procedure known as completing
causality. This article focuses on generating a state-space rep-
resentation of a system.

Figure S1 of Case Study 1 has examples of R components in
each type of causality. For example, the armature resistor R :ra

imposes the armature current (flow), whereas R :rg and R :rb
each impose torque (effort). Figure S1 also has examples of both
integral (I :mg, C :cb, and I :mb) causality as well as derivative
(I :mm) causality.

The assignment of causality to a bond graph can usually
be accomplished automatically by computer if the causality
is specified at key points on the graph, usually the external
ports, and if some general preference for integral or deriva-
tive causality [Figure 6(b) and (c)] is expressed by the mod-
eler. The best known method for automating causal
assignment is the sequential causal assignment procedure
(SCAP) [3], which gives a state-space system representa-
tion. If, indeed, the system has a state-space representation,
the details of the resulting pattern of causal strokes,

although helpful in understanding the inner workings of
the model, need not be viewed by the modeler. However, if
the model does not possess a state-space representation,
then the pattern of causal strokes clarifies the situation and
helps the modeler reconsider the model in terms of the
underlying physical system.

For proper causal completion, which will result in a set
of explicit assignment statements, it is necessary that exact-
ly one bond impose a flow on each 1 junction. Similarly,
exactly one bond must impose an effort on each 0 junction.
The causality of TF and GY components is also subject to
constraints if self-consistent system models are to be gen-
erated. In particular, causality is transmitted unaltered
through TF components, that is, one impinging bond
imposes effort (flow), while the other has effort (flow)
imposed on it. Causality is reversed through a GY compo-
nent so that both impinging bonds impose effort (or flow)
and have flow (or effort) imposed on them. Within these
constraints, causality can be assigned arbitrarily, although
general guidelines, or preferences, are usually expressed.

After specifying the causality at the external interfaces,
it is generally advisable for the modeler to specify the
preferred causality of the system C and I components. As
discussed in Figure 6, C and I components may have
either integral or derivative causality. For simulation or
state-space representations, integral causality is usually
preferable since it leads to ordinary differential equations
(ODEs), which can be computed without recourse to
computationally intensive differential algebraic equation
(DAE) solvers.

Constraints due to 0 and 1 junctions or TF and GY com-
ponents may make it impossible to place all of the energy

storage elements in integral
causality. In this case, dependent
states result in DAEs.

Insofar as modeling is the art
of approximation, that is, decid-
ing which components, features,
and behaviors to omit, bond
graphs can help engineers decide
which approximations are useful
before generating the equations.
For example, approximate mod-
els with derivative causality can
be converted to integral causality
either by adding greater detail to
the model, in the form of addi-
tional states, or by combining
states to simplify the model. An
example of this conversion is the
decision to model a shaft con-
necting two rotating masses as
either rigid or compliant. The
modeler may wish to consider
whether the additional difficulty

FIGURE 7  System causality. (a) Causal bond graph with causality completed on each compo-
nent. As indicated by the causal strokes, the C :c1 component has its preferred causality of flow
in and effort out, the I :m1 component has its preferred causality of effort in and flow out, where-
as the R :r1 component has, in this system, a causality of effort out and flow in. Annotations
such as q1 are for clarity and are not part of the bond-graph notation. (b) Block-
diagram. The input and output of each component corresponds to the causal stroke on the
bond-graph components of (a); the C and I components are in integral causality since they lead
to block-diagram integrators. From Table 1, the associated states are the integrated flow q1 and
integrated effort p1. The block diagram and bond graph share the same color coding to indicate
the corresponding elements.
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of solving DAEs outweighs potential disadvantages associ-
ated with an ODE representation, such as numerical stiff-
ness or reduced transparency in the meaning of quantities
represented by system states.

Although either causal configuration can be meaning-
ful for an R component, the modeler should be aware of
the possibility of algebraic loops arising between multiple
R components. An algebraic loop occurs when the output
of one component is required to determine the input of
another, and vice versa. The formation of an algebraic
loop exists on a bond graph if, between R components
with opposing causality, there exists a path that includes
neither a 1 junction with flow imposed by an I or Sf com-
ponent nor a 0 junction with the effort imposed by a C or
Se component. In other words, to avoid the formation of
an algebraic loop, at least one system input or storage ele-
ment with integral causality must impose a flow on a 1
junction or an effort on a 0 junction in each path between
R components with opposing causality. A slight compli-
cation is that GY components effectively reverse the
causality of the two subsystems on either side of them
with respect to each other. Thus R components may have
opposing causality even if the causal stroke is at the same
end of the bond attached to each component due to a an
odd number of GY components appearing in the path
between them.

In Figure S1 of Case Study 1 the component I :mm has deriv-
ative causality. An ordinary differential equation representation
can be obtained by adding further detail, such as motor shaft
compliance, or by simplifying the model.

One of the benefits of bond-graph modeling is that the
presence of algebraic loops is explicitly visible to the mod-
eler. Although algebraic loops lead to implicit equations,
such loops can be broken in various ways to allow the cre-
ation of an explicit model, for example:

» adjacent R components can be combined to form
equivalent components

» additional dynamics can be modeled by introducing
C or I components between the R components

» algebraic or numerical solvers can be introduced
(using the SS component) to resolve the causal con-
flict

» the causality of adjacent components can be altered
so that both R components can be assigned the same
causality.

Despite the possibility of completely automating causal
assignment, it is generally advisable for the modeler to be
involved in the process since the causal assignments made
within a model carry important information about the sys-
tem and the suitability of the model for any intended pur-
pose. In particular, the information gleaned from causal
assignment gives the modeler immediate feedback as to
the consequences of including or deleting a component
from the bond-graph model of the physical system without
the need to generate equations.

State-Space Equations and Block Diagrams
Bond graphs are an acausal system representation. By assign-
ing a causal stroke to each bond, a causal representation can
be generated. The causally complete model can be converted
into other causal representations such as state-space equa-
tions and block diagrams. This section demonstrates the prin-
ciples of this conversion. Most bond-graph software supports
this conversion and provides an interface to standard control
engineering tools such as Matlab and Octave [4].

The causal strokes on a bond graph provide “signposts”
to guide the generation of state-space equations and block
diagrams. Although software can perform these transfor-
mations automatically, state-space equations can be gener-
ated by hand. 

Both the bond graph and simplified bond graph of Figure S1 of
Case Study 1 correspond to state-space equations with three states
since three components have integral causality in each case. The state-
space equations can be derived by hand or by using symbolic software.

The following steps demonstrate this procedure using
Figure 7(a):

» Identify the states. The system states are the inte-
grated flows q associated with C components, as
well as integrated efforts p associated with I compo-
nents, in integral causality [Figure 6(b)]. In this case
the states are q1, the integrated flow variable associ-
ated with C :c1, and p1, the integrated effort variable
associated with I :m1.

» Write state derivatives in terms of states and inputs.
By definition, (dq1/dt) = fc . Following the causal
strokes, fc = f0 − f1. In this example, f0 is an input
and, following the causal strokes, f1 = (p1/m1) ,
where p1 is a state. Thus, the first state equation is

dq1

dt
= f0 − p1

m1
. (15)

By definition, (dp1/dt) = em . Following the causal
strokes, we obtain em = e0 − er − e1 . In this exam-
ple, e0 = (q1/c1), and e1 is an input. Using the prop-
erties of the R component given in Figure 6(a),
er = r1 f1 = r1(p1/m1). Thus the second state equation is

dp1

dt
= q1

c1
− r1

p1

m1
− e1. (16)

» Write outputs in terms of states and inputs. The
outputs f1 and e0 can be written in terms of the
states as f1 = (p1/m1) and e0 = (q1/c1). Defining

x =
[

q1
p1

]
, y =

[
f1
e0

]
, u =

[
f0
e1

]
, (17)

(15) and (16) can be written in state-space form

dx
dt

(t) = Ax(t) + Bu(t), (18)

y(t) = Cx(t), (19)
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where

A =
[

0 − 1
m1

1
c1

− r1
m1

]
, B =

[
1 0
0 −1

]
, C =

[ 1
c1

0

0 1
m1

]
. (20)

In a similar fashion the block diagram of Figure 7(b) can be
derived from the causally complete bond graph of Figure 7(a).

Case Study 1 uses simplification to reduce the number of
bond-graph components and remove the component I :mm in
derivative causality.

Simplification and Approximation
In the same way that two resistors in series can be com-
bined into a single resistor or two rigidly connected
masses can be combined into a single mass, bond-graph
components can be combined to give a simplified bond
graph with the same external behavior as the original
bond graph. Such simplification can be useful in under-
standing the behavior of a complex system in terms of its
simplified version.

Figure 8 shows two I components separated by a C
component, a bond graph that can represent two rotating
masses separated by a compliant shaft. Under steady state
conditions, the masses rotate at the same speed, and there
is no change in the twist of the shaft. This synchronous

rotation is manifested as zero flow through the bond to the
C component. Even under transient conditions, the flow is
generally small. It may therefore be reasonable to approxi-
mate the flow to zero, an approximation that can be
accomplished explicitly by replacing C with a flow source
Sf adding zero flow to the junction. Having made this
approximation, the bond graph can be simplified by elimi-
nating the Sf component entirely because bonds adding
zero flow to a 0 junction have no effect on the system.

Using some simple rules, further simplifications can easi-
ly be made. A junction connecting only two bonds is redun-
dant since it merely constrains the effort and flow in each
bond to be the same. An identical effect can be achieved by
replacing both bonds and the junction with a single bond,
thereby eliminating the 0 junction. Simplifying further, two
junctions of the same type, which are connected by a single
bond, can be replaced by a single junction of the same type.
The result is a greatly simplified bond graph with two I com-
ponents connected to a single 1 junction. Finally, the approx-
imate system can be simplified as in Figure 9(a) and (b).

In more complex examples, analysis of the causality of
the original model and the simplified version yields infor-
mation that can be used to determine whether the approxi-
mation is effective. The original model has three energy
storage states to which integral causality can be simultane-

ously assigned. The model there-
fore produces a set of three ODEs.
The approximated model has only
two states and is therefore in some
sense simpler. However, following
the rules of causal assignment,
described previously, it is not pos-
sible to simultaneously place both
of the I components in integral
causality. One state must be
placed in derivative causality [Fig-
ure 6(b)], which (without simplifi-
cation) results in a set of DAEs.
Whether the replacement of three
ODEs with two DAEs is a useful
approximation or not depends on
the purpose of the model; never-
theless, a benefit of bond-graph
causality is that the consequences
of such an approximation are
explicit to the modeler.

FIGURE 8  Approximation of bond graphs. (a) Three energy storage states. This bond graph might
represent two rotating masses I :m1 and I :m2 connected by a flexible shaft C:c. (b) If the shaft
has very low compliance, the shaft can be explicitly modeled as rigid by replacing the C compo-
nent with a zero-flow Sf. (c) Since the addition of zero flow to a 0 junction does not affect the sys-
tem dynamics, the bond graph can be simplified by removing the Sf component entirely.

e2

f2

e1

f1
01 1

I:m1 C:c I:m2

(a)

e2

f2

e1

f1

f=0

01 1

I:m1 I:m2Sf:zero

(b)

e2

f2

e1

f1
01 1

I:m1 I:m2

(c)

34 IEEE CONTROL SYSTEMS MAGAZINE » APRIL 2007

The bond-graph method is an approach to modeling in which

component energy ports are connected by bonds that specify the

transfer of energy between system components.

Authorized licensed use limited to: National Formosa University. Downloaded on October 04,2020 at 12:19:43 UTC from IEEE Xplore.  Restrictions apply. 



ADVANTAGES OF BOND GRAPHS
OVER BLOCK DIAGRAMS
Case Study 1 provides evidence for the assertions in the side-
bar “Why Bond Graphs Are Better Than Block Diagrams.”
The evidence is presented below. In particular, Figure 10 is
more complex than the bond graph of Figure S1 of
Case Study 1.

The acausal, equation-based nature of a bond
graph is apparent from the way that components
can be treated identically regardless of the
causality imposed on them. The resistances ra

and rm of Case Study 1 are implemented identi-
cally in the bond-graph model of the motor with
only the later addition of a causal stroke, specify-
ing the inputs and outputs required to generate
assignment statements from the acausal equa-
tions. By contrast, the same resistances ra and rm

depicted in block-diagram form in Figure 10(b)
are implemented differently, with the reciprocal
of the resistance multiplying the input signal in
one case, but not the other.

A more striking example can be seen in the
handling of the motor inertia. Whether the inertia
must be modeled with an integrator or differentia-
tor changes according to its causality, as can be
seen by comparing Figure 10(b) and (c), where a
change to the input and output of the component
model causes the inertia causality to change. In the
first configuration, an output torque is generated
in response to motor speed for a given voltage,
and the inertia is represented by a differentiator.

The block diagram of Figure 10(a), corresponding to
the bond graph of Figure S1 of Case Study 1 is compli-
cated, bearing little relation to the system topology. A
comparison with the bond graph reveals many of the ben-
efits that bond graphs provide for modeling the system.

In the second configuration, the motor torque
is an input, and the shaft speed an output, but
the differentiator must then be changed to an
integrator. It is also necessary to reverse the
direction of some arrows and to change the sign
of the signal connecting the motor torque τm to
the motor mass, which is not necessary in the
bond graph because the positive direction of
energy transport is automatically handled by the
sign convention specified by the bond directions.

The disadvantages of requiring two block dia-
grams to represent one component depending on
its inputs and outputs extend beyond the need to
create and maintain twice as many models. There
is also the problem of unit testing. While it is a
simple matter to verify the dynamic behavior of
the block diagram with integral causality in Fig-
ure 10(c) by specifying constant inputs, this sim-
plicity is not true of the version with a

differentiator in Figure 10(c). Applying a constant shaft
speed does not reveal any of the dynamic characteristics of
the motor. The need for different forms of verification
means that it is necessary to write separate tests for every
particular instantiation of a model in block-diagram form,
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FIGURE 9  Simplification of bond graphs. (a) Connected I and R pairs. This bond
graph might represent two rigidly connected masses, each of which is connect-
ed to a damper. (b) Simplified version of diagram (a). The parameters of each I
and R component can combine as re = r1 + r2 and me = m1 + m2 to create a
simpler model with equivalent properties. (c) TF connected I and R pairs. This
bond graph might represent an electromechanical actuator in which electrical
power is provided to a first-order electrical circuit, with inductance m1 and resis-
tance r1, after which the power is transformed into mechanical power and
applied to a mass-damper with parameters m2 and r2. (d) Simplified version of
diagram (c). The system parameters can combine to form equivalent parame-
ters re = r1 + n 2r2 and me = m1 + n 2m2 . The interpretation of the input
changes to ue = ku in accordance with the elimination of the gain, but the out-
put remains the same. (e) Subsystem with GY connection. This bond graph
can represent a linear electric pump with inductance m and resistance r . (f)
Simplified version of diagram (e). Eliminating the GY:k component, the causali-
ty of the system reverses with respect to the output SS:y, requiring the 1 junc-
tion to be replaced by a 0 junction, and the I:m component to be replaced with
the C :ce component. The parameters associated with the system components
also change to accommodate the elimination of the GY gain, giving ce = m/k2

and re = k2/r . Again, the output remains the same, but the interpretation of the
input changes to ue = ku.
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whereas it suffices to test a single configuration of a bond
graph with confidence that the same model can be used
regardless of the external causality.

Maintenance of bond-graph models is also made easi-
er by the localization of components. It can be seen that
the block-diagram representation of the gearbox requires
that the gear ratio n be specified in two places in Figure
10(d), whereas the corresponding TF :n component need
only be inserted once for the bond-graph representation
(Figure S1). Multiple specification of parameters is usual-
ly only a minor inconvenience when initially creating
models, but can easily lead to the introduction of hard-
to-detect bugs when models are updated to accommo-
date future changes.

ADVANCED TOPICS
The bond-graph method has been developed in several
ways since its inception, and many of these developments
have been initiated at the biennial International Confer-
ence on Bond Graph Modeling. From these extensions, we
discuss several topics that we believe to be of importance
to control engineers. Sources of information for these top-
ics can be found in “Further Reading.”

Physical-Model-Based Control
As discussed in [5], [6] physical-model-based control
regards feedback controllers as physical systems. This
approach has the advantage that both physical intuition
and energy-based stability analysis can be used to design
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FIGURE 10  Block-diagram representation of the system described in Figure S1. (a) The top level system comprises three subsystems,
namely, a motor, a gearbox, and a flexible beam. (b) The motor calculates the torque output in response to a given input voltage and shaft
speed. Note that the resistances Ra and Rm (purple) are implemented differently; Rm appears as a multiplier, whereas the reciprocal of Ra

multiplies its input. This difference corresponds to the different causalities imposed on each of these resistors. The motor gain km appears
twice in the model; if different numerical values were inadvertently assigned to each instance, the model would no longer obey physical
laws. (c) An alternative motor model shows how diagram (b) would need to be modified to cause the model to output shaft speed in
response to an applied load, a change that might be required to permit unit testing of the motor submodel. Note that, as well as reversing
some arrow directions, the integrator 1/s corresponding to the motor inertia (red) must be replaced with a differentiator s, and the sign of the
signal from the motor torque to the summing junction must be reversed. (d) The gearbox block diagram includes the gearing, gear inertia,
and friction. Note that the gear ratio n (brown) appears twice in the model; once again, different values assigned to each block result in a
nonphysical system. (e) The flexible-beam block diagram comprises the beam compliance, inertia, and linear friction model. Note that the
output torque is calculated by the beam compliance (green), which cannot therefore be easily removed.
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stable controllers. One example
of physical-model-based control
is the impedance control method-
ology of [7], which is applied in
the robotics field and, more
recently, in the design of structur-
al dynamics experiments [8].

Perhaps the simplest version
of physical-model-based control
is the realization that a PID con-
troller is analogous to a mass-
spring-damper system and can
therefore (as in Case Study 1) be
treated as a physical system
attached to the controlled physi-
cal system. Using bond-graph
representations, Figure 11 shows
the physical systems correspond-
ing to two versions of PID control. In particular, if kp = k,
ki = (k/Ti), and kd = kTd, then Figure 11(a) corresponds to
the PID controller

u = k
(

1 + 1
Tis

+ Tds
)

(w − y).

It is well known that such a control, although a conve-
nient idealization, is not practical due to the pure deriva-
tive action, which is reflected in the fact that the I
component in Figure 11(a) must be assigned derivative
causality. Figure 11(b) shows the bond graph correspond-
ing to a PID control with filtered derivative. Note that the I
component now has integral causality. In particular if
kf = (Tf /kTd), the controller equation becomes

u = k

(
1 + 1

Tis
+ Td

s
1 + Tf s

)
(w − y).

A crucial feature of this approach is that the system
input u and output y must be colocated, that is, the bond
at the lower right of each controller of Figure 11 can be
directly connected to a port of the controlled system. If
this is not the case and u and y are associated with differ-
ent system ports, one approach is to revert to convention-
al control-system design based on the state-space
approach or the block-diagram approach. In other words,
the bond-graph methodology is used just for system
modeling, and the bond graph is converted into state-
space or transfer function form to be analyzed using con-

ventional software tools such as Matlab or Octave. As an
alternative, current research investigates physical-model-
based control in the noncolocated case [8], [9].

Inversion and Bicausality
The systems of Figure 4 have the acausal bond graph of
Figure 4(d). When natural causality is imposed as in Fig-
ure 7, the system input u and output y are

u =
[

f0
e1

]
, y =

[
e0
f1

]
. (21)

The corresponding system transfer function is

G =



m1 s+r1
c1m1 s2+c1 r1 s+1

1
c1m1 s2+c1 r1 s+1

1
c1m1 s2+c1 r1 s+1

−c1 s
c1m1 s2+c1 r1 s+1


 . (22)

This system has two poles corresponding to the compo-
nents C :c1 and I :m1 in integral causality.

For some applications, such as actuator sizing [10], [11],
it is of interest to compute inputs in terms of outputs,
which leads to system inversion. Because of their acausal
nature, [such as Figure 4(d)], bond-graph models are
amenable to inversion. In Figure 12(a) the causality at the
left-hand port is reversed to change the choice of system
input and output from (21) to

u =
[

e0
e1

]
, y =

[
f0
f1

]
. (23)
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FIGURE 11  PID Control. (a) Pure PID. R :kp, C :ki, and I :kd give the proportional, integral, and
derivative terms, respectively; I :kd has derivative causality. (b) Filtered PID. R :kf and the associ-
ated 1 junction give a lowpass filtering effect on the derivative action; I :kd now has integral
causality.
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Simple rules govern the transformation of bond graphs into

other system representations.
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The transfer function arising from this choice is

G =
[ c1m1 s2+c1 r1 s+1

m1 s+r1

−1
m1 s+r1

1
m1 s+r1

−1
m1 s+r1

]
. (24)

Not surprisingly, this transfer function is improper; the
fact that it has only one pole follows from the fact that only
the component I :m1 is in integral causality.

Another choice of inputs and outputs is

u =
[

e1
f1

]
, y =

[
eo

fo

]
. (25)

However, the concept of bond-graph causality must be
extended in this case. Remember that each bond carries
two covariables, namely effort and flow. The place-
ment of a single causal stroke at one end of the bond, as
in Figure 6, indicates which component sets the effort
and which sets the flow. This configuration is uni-
causal. By contrast, a bicausal model contains bonds in

which one component sets both the effort and the flow.
In Figure 12(b), bicausality is signified on a bond graph
by separating the causal stroke into two half strokes
[12], [13].

The model corresponding to the bond graph of Figure
4(d) can now be inverted by changing the causality of the
bonds to that depicted in Figure 12(c). The resulting
improper transfer function is

G =
[

1 m1s + r1
c1s c1m1s2 + c1r1s + 1

]
. (26)

The transfer function has no poles because both C :c1 and
I :m1 are now in derivative causality [Figure 6(b)].

It is worth emphasizing the qualitative aspects of inver-
sion by this method. Model inversion is accomplished by
changing the causality at the model interfaces. Changes in
causality propagate through the model automatically and
thus require no change to the model itself. Although trans-
fer functions are given for completeness, the number of

poles and zeros is deduced by
counting the number of compo-
nents in integral causality in the
bond graphs of the system and
inverse system, respectively.

Hierarchical Systems
Simple bond graphs can be con-
structed entirely from the stan-
dard basic components listed in
Table 2. These models can be
used in further bond graphs to
create models of greater com-
plexity, namely, hierarchical
bond-graph models. Hierarchi-
cal bond graphs offer many of
the benefits that are frequently
associated with object-oriented
programming techniques.

When working with bond
graphs, it is natural to con-
struct models by performing a
top-down decomposition of the
system of interest. By encap-
sulating low-level functionality
within self-contained compo-
nent models, clutter can be
minimized easing visual in-
spection, thus helping the mod-
eler focus on an appropriate
level of abstraction at each
stage of the model develop-
ment. Such decomposition can
also greatly ease the process of
verifying that the structure of
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FIGURE 12  Bicausality and Inversion. (a) Partial inversion. The RCI model of Figure 7 can be partially
inverted by changing the causality at the left-hand system port. The output f0 of the model is the flow
required to cause the effort e0 to track a desired signal given a disturbance e1. (b) Bicausality. Using
half strokes, each bond can have one of four bicausal configurations. (c) Inversion. The RCI model of
Figure 7 can be inverted by changing the causality at the system interfaces. These changes propagate
through the model and cause C :c1 and I :m1 to be placed in derivative causality. The output of the
model f0 is the flow required to cause the flow f1 to track a desired signal given a disturbance e1; e0

is the corresponding effort, and e0f0 is the power required.
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the model accurately mimics the structure of the system
that it is intended to represent. Subsystem encapsulation
makes it easy to maintain libraries of components and swap
entire classes of components within a model. Therefore, it is
appropriate in the early stages of model construction to use
very simple subsystem models. As model development
progresses, components can be refined, and subsystems of
greater complexity can be constructed, tested, and inserted
into the higher-level model.

Hierarchical models are implemented using external
port components, which are equivalent to combined
source-sensors. These external ports are connected to other
subsystem models using standard component bonds, with
causality assigned in the same way as for any other bond.
It is therefore possible for the causality of the bonds at the
external interfaces to change. This property is particularly
useful for embedding bond-graph models within system-
of-systems models, where the subsystem models adapt
their causal configuration to the context in which they find
themselves. This feature of external ports without fixed
causality is a significant advantage of bond graphs over
block-diagram-based modeling methods.

Hybrid Systems
Many useful engineering systems incorporate switches,
that is, components that fundamentally change the glob-

al nature of the system by making or breaking local con-
nections. The effects of switches on the global system are
generally much larger than the local physical effects of
the switching action itself, and thus it is often useful to
represent switches as an instantaneous change in a sys-
tem variable.

When the switch establishes a connection within a
system, any causal configuration can be meaningful
across the switch. However, when it is used to break a
connection, there is generally a definite causal config-
uration associated with it. Opening an electrical con-
tact or closing a fluid valve can be represented on a
bond graph by imposing zero flow on the 1 junction
representing the wire or pipe in which the switch or
valve is placed. Similarly, the imposition of zero effort
on a  0 junct ion models  the  ef fect  of  breaking a
mechanical link.

In certain circumstances, it is desirable to ensure that
the inclusion of a switch does not change the global causal-
ity of a model. For example, it is often desired that all C
and I components be assigned integral causality so that no
algebraic equations need to be solved. Inertial switches
(ISW) or capacitive switches (CSW), which combine an
ideal switching element with an I or C component, can be
used to ensure that there is no change in causality due to
the action of the switch.
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FIGURE 13  Bouncing ball. (a) The bond graph superimposed on the schematic diagram. The CSW component models the ground, while the
INTF component integrates the flow (velocity) to give height. (b) In this simulation, the ball is dropped from 10 m. The air resistance reduces
each rebound, while the ground compliance allows negative height.

Ball

Ground

v

−v

R:air_resistance 1 SS:gravity

I:ball_mass

CSW:ground

0

INTF:intf SS:x

(a)

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10
−2

x 
(m

)

t (s)

(b)

The bond-graph method is a useful modeling tool, particularly

well suited for describing physical systems.
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Figure 13 gives an example of using a CSW component
in a mechanical context. When the ball is above ground, the
CSW is open and no force is exerted on the ball; when the
ball is below ground, the CSW acts as an ordinary spring,
thus creating a bounce.

Distributed-Parameter Systems
Although the bond-graph approach does not explicitly han-
dle distributed-parameter systems described by partial dif-

ferential equations, these systems can be approximated using
N discrete lumps. For example, the flexible beam of Figure
S1(a), approximated in S1(c) by a single lump, can be better
approximated using N lumped elements each of the form of
Figure 14(a). Using the Bernoulli-Euler approximation, each
lump has the bond-graph representation of Figure 14(b).

Figure 14(c) shows the frequency response relating
angle and angular velocity at the fixed end of the beam for
different N. The final choice of N depends on the band-
width over which the approximation is required.

CASE STUDY 2: AN AIRCRAFT FUEL SYSTEM
The second case study is an aircraft fuel system modeled
using bond graphs. The design presented is a hybrid of
three aircraft.
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FIGURE 14  A uniform beam. (a) An infinitesimal lump of width δz. The vertical velocity v is driven by the net force δF , while the torque τ is
driven by the net angular velocity δ�. (b) Lumped bond graph. The interaction between angular and linear motion is expressed by the trans-
former TF:dz, the linear motion of the lump is expressed by I:dm, and the angular twist by C:dk. The term R:dr expresses structural damp-
ing. (c) Frequency responses |g( jω)| for N lumped elements, where N = 5, 20, 40.
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The model that we develop is suitable for preliminary
fuel-system architectural design, typically performed during
the conceptual design phase, or as a realistic fuel system sub-
stitute for integration testing during later design phases.
More interestingly perhaps for control engineers, the model
is eminently suitable for use in specifying, developing, and

verifying complex system control software, which is the
most expensive part of most modern aircraft development.

For architectural design work, the main requirements
are that the model should be easy to modify, easy to
analyze, and give reasonably accurate results for minimal
effort if the design changes frequently and questions about
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FIGURE 15  A simple aircraft fuel model. (a) Fuel tank layout. (b) Bond graph. The refuel system is depicted in green; the feed system in red.
The system consists of nine tanks of which there are six types.
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system performance must be
answered quickly.

For integration testing and control
software development, models must
typically be capable of running in real
time, while exhibiting the main fea-
tures of the system behavior and
dynamically exciting all relevant
interfaces through which the model is
connected to other systems. In these
cases, models are often used by peo-
ple not closely associated with the
system hardware itself and so must
be reliable and not require specialized
knowledge of the system in order for
the model to be operated successfully.

Model Design
The Fuel model [Figure 15(b)] is a
hierarchical bond graph repre-
senting a simple aircraft fuel-man-
agement system. The system
comprises nine fuel tanks, of
which there are six types, namely,
one instance each of the Forward-
Tank, CentreTank, and FeedTank
fuel tanks, and the InnerWing-
Tank [Figure 16(a)], OuterWing-
Tank and AftTank types, which
are each instantiated twice due to
the lateral symmetry of the air-
craft. For simplicity, the system is
athermal, and the pipework is
assumed to be coplanar and per-
pendicular to the external gravita-
tional field. The connections
between the tanks form two major
subsystems: Refuel (green) and
Feed (red) the respective purposes
of which are to load fuel into the
aircraft and transfer it from the
storage tanks to the feed tank,
which supplies the jet engine.
These subsystems can also be
used to transfer fuel around the
aircraft according to the demands
of the flight control system.

Fuel enters the system through
the ground refueling point (Refu-
el:Ground) attached to the center
fuselage tank (CentreTank:F2) and
leaves the system through the sin-
gle jet engine (Engine:jet). The
engine is supplied with fuel from
the feed tank (FeedTank:F3).

FIGURE 16  Submodels. (a) Tank. Each tank submodel includes the Valve and Pump compo-
nents, which are located within the tank, and a Volume, which contains the fuel and inert gas.
(b) Volume. This component represents the storage of the fuel and inert gas, which is con-
tained within the tank. The fuel is stored in a C component with an incompressible constitutive
relationship. The gas is stored in a C component with a compressible constitutive relationship.
A TF represents the surface separating the two fluid domains. (c) Valve. (d) Pump. These
components are the electromechanical actuators that control the movement of the fluid within
the fuel system. Interfaces with the dc electrical system are included in the component models.
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Each of the six tank types contains a Volume [Figure
16(b)], which contains stored fuel and inert gas, and
Valve and Pump components [Figure 16(c) and (d)],
which allow fuel to enter or leave the tank.

The valves contain resistive losses representing the
valve orifices and the pipes to which they are connected.
The frictional losses in the pipes are implemented with a
simple resistive component (R:pipe). Losses associated
with the valve orifice are implemented using a flow-modu-
lated resistor (FMR:orifice), the resistance of which is
modulated according to the valve position, which is con-
trolled by an electronic actuator. Inertial switches are used
to allow or disallow the flow of fuel through the valves.

The Valve and Pump components contain controllers
that regulate the flow of fuel. The control logic is imple-
mented as a simple text file, which actuates these compo-
nents according to the quantity of fuel in the tanks (the
system states). The simple aim of the control logic as
implemented is to keep the feed tank as full as possible at
all times so that the engine does not run dry. The results
of a simulation using this model and the control logic can
be seen in Figure 17, which shows the volume levels of
fuel in the tanks as fuel is consumed by the engine. A real
fuel-management system would have additional require-
ments, such as apportioning the remaining fuel between
the other tanks to control the center of gravity of the fuel
to within appropriate longitudinal and lateral limits for
the flight mode to enhance agility, or maintain stability
while optimizing range.

Benefits of Modeling
the System as a Bond Graph
Implementing the fuel system
model as a bond graph provides
several benefits over traditional sig-
nal flow models that would typical-
ly be produced using tools such as
Simulink or EASY5. Perhaps the
most important benefit is the adapt-
able nature of the interfaces. After
development and testing, compo-
nent and subsystem models must
be capable of being embedded in
diverse environments and able to
adapt to a range of conditions.

Consider the refuel system.
Design of pipe geometry requires
that pressure drops remain within
certain limits when maximum flow
is forced through the pipes, so the
model must be able to accept a
flow of fuel as an input at the refu-
eling end, and the pipes must
determine the system pressure loss.
However, to verify that the result-

ing design meets performance requirements relating to
maximum permissible refuel time, it is necessary to
instead perform simulations with an appropriate fuel pres-
sure applied at the input and fuel flow rates calculated
through the pipes and valves. Signal flow models would
require separate models, with a consequent doubling of
the amount of testing required.

The need for additional models would also mean that
more new models are used throughout the design
process, with a risk of new errors being introduced. It is
generally preferable to use existing tried-and-tested mod-
els wherever possible.

Adaptable interfaces are also beneficial when inte-
grating system models to produce a virtual integrated
aircraft model. If all of the systems are produced as bond
graphs, all of the interfaces are guaranteed to transact
power, which greatly simplifies the task of stitching
models together. The task is further simplified by the
fact that the causality of the interfaces can be changed
without producing new models. Thus, an electric fuel
pump, which accepts a constant voltage input during
fuel system simulations, can easily be adapted to output

FIGURE 17  Simulation of the hybrid fuel model. The volume of fluid in each tank changes as
fuel is consumed by the jet engine. A simple logic controller aims to keep the feed tank (F3)
replenished from the transfer tanks, using the valves and pumps. The steps at 0.9 m3 are due
to thresholds within the control logic that prevent valve chatter. The volume of fuel in the trans-
fer tanks never quite reaches zero because residual fuel always remains due to tank geometry;
this behavior is modeled by low-level thresholds in the control logic. A more sophisticated con-
troller would attempt to also maintain the center of gravity within acceptable limits.
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a voltage when connected to a current-producing electri-
cal distribution model.

The compact nature of bond graphs also makes them
ideal for representing fluid flow, which is just a particular
form of energy transport. Unlike signal flow diagrams, it is
not necessary to take any particular care with the sign con-
vention for flows at each port of a component model. Since
the bond-graph sign convention is simply specified by the

direction of bonds impinging on a component, there is no
difficulty with removing components and embedding
them in other parts of the system model.

It should be noted that producing bond-graph system
models does not require that control engineers give up tra-
ditional design tools. Several bond-graph software pack-
ages can convert bond graphs to formats that can be
embedded directly within Matlab and Simulink—as m-
files, mex files, and S functions—and within other software
packages in their native formats. Using appropriate tools
for each stage of work generally yields better results than
attempting to use the most readily available tool for all
aspects of system design.

We recommend creating models with specialist model-
ing tools, running simulations within appropriate simula-
tion harnesses, and performing control design with
appropriate design tools. Pencil and paper can of course be
substituted for software at any stage of the development
process except real-time simulation.

CONCLUSIONS
This article has presented an introduction to bond graphs
for control engineers. Although the notation can initially
appear daunting, the bond graph method is firmly
grounded in the familiar concepts of energy and power.
The essential element to be grasped is that bonds represent
power transactions between components. Engineers can
quickly become adept at applying the technique with just a
little practice.

The use of generic components and variables makes it a
simple matter to model multidomain systems, allowing
engineers to analyze complex problems and interactions
that might normally be hidden by more traditional
approaches to subsystem division and analysis.

The graphical nature of bond graphs enables modelers
to easily identify potentially troublesome areas of their
system representations and to quickly determine the form
of remedy that can make the model more appropriate for
the task in hand. The method is particularly beneficial in
identifying where supposedly simplifying assumptions
and approximations might be counterproductive.

Simple rules govern the transformation of bond graphs
into other system representations, and readily available
software exists to perform conversions automatically. Sys-
tems modeled as bond graphs can thus be easily integrated
with familiar control engineering toolsets.
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Related Paradigms

B ond graphs are related to other modeling approaches. Two

of these of particular interest are the behavioral approach

and energy-based methods, such as dissipative systems and

the port-controlled Hamiltonian approach.

The behavioral approach [15], [16] and the bond-graph

approach provide two of the many ways of describing and

understanding dynamical systems. As discussed in more detail

in [17], the two approaches are similar in that

» the system description does not distinguish inputs and

outputs, but rather is viewed as a constraint on a set of

variables: the manifest variables in behavioral terms and

port variables in bond-graph terms

» systems are connected without assigning the input/output

structure beforehand

» state-variable descriptions are regarded as representa-

tions to be derived from the basic system representation

only when decisions have been made about which vari-

ables are to be regarded as inputs and outputs.

The two approaches are different in that

» the bond-graph approach is graphical, whereas the

behavioral approach is mathematical

» the bond-graph approach is explicitly based on energy

concepts and uses the systematic modeling approach

whereby physical system variables are classified accord-

ing to Table 1

» the behavioral approach handles distributed systems,

described by partial differential equations. The bond-

graph approach does not.

It is becoming recognized that energy-based methods are

relevant to control engineers, see [18]. Bond graphs are inher-

ently energy based and thus are related to other energy-based

methods, including dissipative systems [19]–[21] and, as shown

in [22], port-Hamiltonian systems.

Bond graphs are inherently energy based and thus are related

to other energy-based methods, including dissipative systems

and port-Hamiltonian systems.
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The bond-graph approach is not unique in focusing on
energy and in determining causality after modeling. Alter-
native approaches with these characteristics are discussed
in “Related Paradigms.” However the bond-graph
approach is unique in combining these features with an
intuitively appealing graphical modeling and causality
analysis formulation.

We believe that the bond-graph method is a useful
modeling tool, particularly well suited for describing phys-
ical systems, and can provide a powerful way for engi-
neers to analyze and solve the problems that they face.
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